Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557494

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects nearly 40% of the global adult population and may progress to metabolic dysfunction-associated steatohepatitis (MASH), and MASH-associated liver fibrosis and cirrhosis. Despite numerous studies unraveling the mechanism of hepatic fibrogenesis, there are still no approved antifibrotic therapies. The development of MASLD and liver fibrosis results from complex cell-cell interactions that often initiate within hepatocytes but remain incompletely understood. In this issue of the JCI, Yan and colleagues describe an ATF3/HES1/CEBPA/OPN pathway that links hepatocyte signals to fibrogenic activation of hepatic stellate cells and may provide new perspectives on therapeutic options for MASLD-induced liver fibrosis.


Asunto(s)
Hígado Graso , Cirrosis Hepática , Adulto , Humanos , Hepatocitos , Células Estrelladas Hepáticas , Comunicación Celular
2.
Hepatology ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563629

RESUMEN

BACKGROUND AND AIMS: Fibrosis is the common end point for all forms of chronic liver injury, and the progression of fibrosis leads to the development of end-stage liver disease. Activation of HSCs and their transdifferentiation into myofibroblasts results in the accumulation of extracellular matrix proteins that form the fibrotic scar. Long noncoding RNAs regulate the activity of HSCs and provide targets for fibrotic therapies. APPROACH AND RESULTS: We identified long noncoding RNA TILAM located near COL1A1 , expressed in HSCs, and induced with liver fibrosis in humans and mice. Loss-of-function studies in human HSCs and human liver organoids revealed that TILAM regulates the expression of COL1A1 and other extracellular matrix genes. To determine the role of TILAM in vivo, we annotated the mouse ortholog ( Tilam ), generated Tilam- deficient green fluorescent protein-reporter mice, and challenged these mice in 2 different models of liver fibrosis. Single-cell data and analysis of single-data and analysis of Tilam-deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Tilam -deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Furthermore, loss of Tilam expression attenuated the development of fibrosis in the setting of in vivo liver injury. Finally, we found that TILAM interacts with promyelocytic leukemia nuclear body scaffold protein to regulate a feedback loop by which TGF-ß2 reinforces TILAM expression and nuclear localization of promyelocytic leukemia nuclear body scaffold protein to promote the fibrotic activity of HSCs. CONCLUSIONS: TILAM is activated in HSCs with liver injury and interacts with promyelocytic leukemia nuclear body scaffold protein to drive the development of fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end-stage liver disease.

3.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617330

RESUMEN

Objectives: Hepatic CEACAM1 expression declines with advanced hepatic fibrosis stage in patients with MASH. Global and hepatocyte-specific deletions of Ceacam1 impair insulin clearance to cause hepatic insulin resistance and steatosis. They also cause hepatic inflammation and fibrosis, a condition characterized by excessive collagen production from activated hepatic stellate cells (HSCs). Given the positive effect of PPARγ on CEACAM1 transcriptoin and on HSCs quiescence, the current studies investigated whether CEACAM1 loss from HSCs causes their activation. Methods: We examined whether lentiviral shRNA-mediated CEACAM1 donwregulation (KD-LX2) activates cultured human LX2 stellate cells. We also generated LratCre+Cc1 fl/fl mutants with conditional Ceacam1 deletion in HSCs and characterized their MASH phenotype. Media transfer experiments were employed to examine whether media from mutant human and murine HSCs activate their wild-type counterparts. Results: LratCre+Cc1 fl/fl mutants displayed hepatic inflammation and fibrosis but without insulin resistance or hepatic steatosis. Their HSCs, like KD-LX2 cells, underwent myofibroblastic transformation and their media activated wild-type HDCs. This was inhibited by nicotinic acid treatment which stemmed the release of IL-6 and fatty acids, both of which activate the epidermal growth factor receptor (EGFR) tyrosine kinase. Gefitinib inhibition of EGFR and its downstream NF-κB/IL-6/STAT3 inflammatory and MAPK-proliferation pathways also blunted HSCs activation in the absence of CEACAM1. Conclusions: Loss of CEACAM1 in HSCs provoked their myofibroblastic transformation in the absence of insulin resistance and hepatic steatosis. This response is mediated by autocrine HSCs activation of the EGFR pathway that amplifies inflammation and proliferation.

4.
Immunity ; 57(2): 303-318.e6, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38309273

RESUMEN

Production of amphiregulin (Areg) by regulatory T (Treg) cells promotes repair after acute tissue injury. Here, we examined the function of Treg cells in non-alcoholic steatohepatitis (NASH), a setting of chronic liver injury. Areg-producing Treg cells were enriched in the livers of mice and humans with NASH. Deletion of Areg in Treg cells, but not in myeloid cells, reduced NASH-induced liver fibrosis. Chronic liver damage induced transcriptional changes associated with Treg cell activation. Mechanistically, Treg cell-derived Areg activated pro-fibrotic transcriptional programs in hepatic stellate cells via epidermal growth factor receptor (EGFR) signaling. Deletion of Areg in Treg cells protected mice from NASH-dependent glucose intolerance, which also was dependent on EGFR signaling on hepatic stellate cells. Areg from Treg cells promoted hepatocyte gluconeogenesis through hepatocyte detection of hepatic stellate cell-derived interleukin-6. Our findings reveal a maladaptive role for Treg cell-mediated tissue repair functions in chronic liver disease and link liver damage to NASH-dependent glucose intolerance.


Asunto(s)
Intolerancia a la Glucosa , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Anfirregulina/genética , Anfirregulina/metabolismo , Receptores ErbB/metabolismo , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Linfocitos T Reguladores/metabolismo
5.
Cell Rep Med ; 5(2): 101401, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38340725

RESUMEN

The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-ß1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Activación Metabólica , Cirrosis Hepática/genética , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Fibrosis , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo
6.
bioRxiv ; 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37546982

RESUMEN

Background & Aims: Fibrosis is the common endpoint for all forms of chronic liver injury, and progression of fibrosis leads to the development of end-stage liver disease. Activation of hepatic stellate cells (HSCs) and their transdifferentiation to myofibroblasts results in the accumulation of extracellular matrix (ECM) proteins that form the fibrotic scar. Long noncoding (lnc) RNAs regulate the activity of HSCs and may provide targets for fibrotic therapies. Methods: We identified lncRNA TILAM as expressed near COL1A1 in human HSCs and performed loss-of-function studies in human HSCs and liver organoids. Transcriptomic analyses of HSCs isolated from mice defined the murine ortholog of TILAM . We then generated Tilam -deficient GFP reporter mice and quantified fibrotic responses to carbon tetrachloride (CCl 4 ) and choline-deficient L-amino acid defined high fat diet (CDA-HFD). Co-precipitation studies, mass spectrometry, and gene expression analyses identified protein partners of TILAM . Results: TILAM is conserved between human and mouse HSCs and regulates expression of ECM proteins, including collagen. Tilam is selectively induced in HSCs during the development of fibrosis in vivo . In both male and female mice, loss of Tilam results in reduced fibrosis in the setting of CCl 4 and CDA-HFD injury models. TILAM interacts with promyelocytic leukemia protein (PML) to stabilize PML protein levels and promote the fibrotic activity of HSCs. Conclusion: TILAM is activated in HSCs and interacts with PML to drive the development of liver fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end stage liver disease.

7.
Lancet Gastroenterol Hepatol ; 8(8): 748-759, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37385282

RESUMEN

Accumulation of fibroblasts in the premalignant or malignant liver is a characteristic feature of liver cancer, but has not been therapeutically leveraged despite evidence for pathophysiologically relevant roles in tumour growth. Hepatocellular carcinoma is a largely non-desmoplastic tumour, in which fibroblasts accumulate predominantly in the pre-neoplastic fibrotic liver and regulate the risk for hepatocellular carcinoma development through a balance of tumour-suppressive and tumour-promoting mediators. By contrast, cholangiocarcinoma is desmoplastic, with cancer-associated fibroblasts contributing to tumour growth. Accordingly, restoring the balance from tumour-promoting to tumour-suppressive fibroblasts and mediators might represent a strategy for hepatocellular carcinoma prevention, whereas in cholangiocarcinoma, fibroblasts and their mediators could be leveraged for tumour treatment. Importantly, fibroblast mediators regulating hepatocellular carcinoma development might exert opposite effects on cholangiocarcinoma growth. This Review translates the improved understanding of tumour-specific, location-specific, and stage-specific roles of fibroblasts and their mediators in liver cancer into novel and rational therapeutic concepts.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Fibroblastos/patología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Colangiocarcinoma/terapia , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/patología
8.
J Hepatol ; 79(5): 1214-1225, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37348791

RESUMEN

BACKGROUND & AIMS: Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-ß docking molecule. While the immune regulatory properties of GARP on blood cells have been studied, the function of GARP on tissue stromal cells remains unclear. Here, we investigate the role of GARP expressed on hepatic stellate cells (HSCs) in the development of liver fibrosis. METHODS: The function of GARP on HSCs was explored in toxin-induced and metabolic liver fibrosis models, using conditional GARP-deficient mice or a newly generated inducible system for HSC-specific gene ablation. Primary mouse and human HSCs were isolated to evaluate the contribution of GARP to the activation of latent TGF-ß. Moreover, cell contraction of HSCs in the context of TGF-ß activation was tested in a GARP-dependent fashion. RESULTS: Mice lacking GARP in HSCs were protected from developing liver fibrosis. Therapeutically deleting GARP on HSCs alleviated the fibrotic process in established disease. Furthermore, natural killer T cells exacerbated hepatic fibrosis by inducing GARP expression on HSCs through IL-4 production. Mechanistically, GARP facilitated fibrogenesis by activating TGF-ß and enhancing endothelin-1-mediated HSC contraction. Functional GARP was expressed on human HSCs and significantly upregulated in the livers of patients with fibrosis. Lastly, deletion of GARP on HSCs did not augment inflammation or liver damage. CONCLUSIONS: GARP expressed on HSCs drives the development of liver fibrosis via cell contraction-mediated activation of latent TGF-ß. Considering that systemic blockade of TGF-ß has major side effects, we highlight a therapeutic niche provided by GARP and surface-mediated TGF-ß activation. Thus, our findings suggest an important role of GARP on HSCs as a promising target for the treatment of liver fibrosis. IMPACT AND IMPLICATIONS: Liver fibrosis represents a substantial and increasing public health burden globally, for which specific treatments are not available. Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-ß docking molecule. Here, we show that GARP expressed on hepatic stellate cells drives the development of liver fibrosis. Our findings suggest GARP as a novel target for the treatment of fibrotic disease.

9.
Methods Mol Biol ; 2669: 207-220, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37247062

RESUMEN

Hepatic stellate cells (HSCs) exert key roles in the development of liver disease. Cell-specific genetic labeling, gene knockout and depletion are important for the understanding of the HSC in homeostasis and a wide range of diseases ranging from acute liver injury and liver regeneration to nonalcoholic liver disease and cancer. Here, we will review and compare different Cre-dependent and Cre-independent methods for genetic labeling, gene knockout, HSC tracing and depletion, and their applications to different disease models. We provide detailed protocols for each method including methods to confirm successful and efficient targeting of HSCs.


Asunto(s)
Células Estrelladas Hepáticas , Hepatopatías , Humanos , Células Estrelladas Hepáticas/patología , Hígado/patología , Hepatopatías/patología , Macrófagos del Hígado , Cirrosis Hepática/genética , Cirrosis Hepática/patología
10.
Gastroenterology ; 164(7): 1279-1292, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36894036

RESUMEN

BACKGROUND & AIMS: Despite recent progress, long-term survival remains low for hepatocellular carcinoma (HCC). The most effective HCC therapies target the tumor immune microenvironment (TIME), and there are almost no therapies that directly target tumor cells. Here, we investigated the regulation and function of tumor cell-expressed Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in HCC. METHODS: HCC was induced in mice by Sleeping Beauty-mediated expression of MET, CTNNB1-S45Y, or TAZ-S89A, or by diethylnitrosamine plus CCl4. Hepatocellular TAZ and YAP were deleted in floxed mice via adeno-associated virus serotype 8-mediated expression of Cre. TAZ target genes were identified from RNA sequencing, confirmed by chromatin immunoprecipitation, and evaluated in a clustered regularly interspaced short palindromic repeats interference (CRISPRi) screen. TEA domain transcription factors (TEADs), anillin (ANLN), Kif23, and programmed cell death protein ligand 1 were knocked down by guide RNAs in dead clustered regularly interspaced short palindromic repeats-associated protein 9 (dCas9) knock-in mice. RESULTS: YAP and TAZ were up-regulated in murine and human HCC, but only deletion of TAZ consistently decreased HCC growth and mortality. Conversely, overexpression of activated TAZ was sufficient to trigger HCC. TAZ expression in HCC was regulated by cholesterol synthesis, as demonstrated by pharmacologic or genetic inhibition of 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), farnesyl pyrophosphate synthase, farnesyl-diphosphate farnesyltransferase 1 (FDFT1), or sterol regulatory element-binding protein 2 (SREBP2). TAZ- and MET/CTNNB1-S45Y-driven HCC required the expression of TEAD2 and, to a lesser extent, TEAD4. Accordingly, TEAD2 displayed the most profound effect on survival in patients with HCC. TAZ and TEAD2 promoted HCC via increased tumor cell proliferation, mediated by TAZ target genes ANLN and kinesin family member 23 (KIF23). Therapeutic targeting of HCC, using pan-TEAD inhibitors or the combination of a statin with sorafenib or anti-programmed cell death protein 1, decreased tumor growth. CONCLUSIONS: Our results suggest the cholesterol-TAZ-TEAD2-ANLN/KIF23 pathway as a mediator of HCC proliferation and tumor cell-intrinsic therapeutic target that could be synergistically combined with TIME-targeted therapies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Microambiente Tumoral , Proteínas Señalizadoras YAP/metabolismo
12.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902241

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) can progress to non-alcoholic steatohepatitis (NASH), characterized by inflammation and fibrosis. Fibrosis is mediated by hepatic stellate cells (HSC) and their differentiation into activated myofibroblasts; the latter process is also promoted by inflammation. Here we studied the role of the pro-inflammatory adhesion molecule vascular cell adhesion molecule-1 (VCAM-1) in HSCs in NASH. VCAM-1 expression was upregulated in the liver upon NASH induction, and VCAM-1 was found to be present on activated HSCs. We therefore utilized HSC-specific VCAM-1-deficient and appropriate control mice to explore the role of VCAM-1 on HSCs in NASH. However, HSC-specific VCAM-1-deficient mice, as compared to control mice, did not show a difference with regards to steatosis, inflammation and fibrosis in two different models of NASH. Hence, VCAM-1 on HSCs is dispensable for NASH development and progression in mice.


Asunto(s)
Células Estrelladas Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Molécula 1 de Adhesión Celular Vascular , Animales , Ratones , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Inflamación/metabolismo , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Modelos Animales de Enfermedad
13.
Nat Rev Gastroenterol Hepatol ; 20(6): 349-365, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36697706

RESUMEN

Cholangiocarcinoma is the second most common primary liver cancer. Its incidence is low in the Western world but is rising globally. Surgery, chemotherapy and radiation therapy have been the only treatment options for decades. Progress in our molecular understanding of the disease and the identification of druggable targets, such as IDH1 mutations and FGFR2 fusions, has provided new treatment options. Immunotherapy has emerged as a potent strategy for many different types of cancer and has shown efficacy in combination with chemotherapy for cholangiocarcinoma. In this Review, we discuss findings related to key immunological aspects of cholangiocarcinoma, including the heterogeneous landscape of immune cells within the tumour microenvironment, the immunomodulatory effect of the microbiota and IDH1 mutations, and the association of immune-related signatures and patient outcomes. We introduce findings from preclinical immunotherapy studies, discuss future immune-mediated treatment options, and provide a summary of results from clinical trials testing immune-based approaches in patients with cholangiocarcinoma. This Review provides a thorough survey of our knowledge on immune signatures and immunotherapy in cholangiocarcinoma.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/terapia , Inmunoterapia/métodos , Terapia Molecular Dirigida/métodos , Neoplasias de los Conductos Biliares/terapia , Conductos Biliares Intrahepáticos/patología , Microambiente Tumoral
14.
Gut ; 72(4): 736-748, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35584893

RESUMEN

OBJECTIVE: The diversity of the tumour microenvironment (TME) of intrahepatic cholangiocarcinoma (iCCA) has not been comprehensively assessed. We aimed to generate a novel molecular iCCA classifier that incorporates elements of the stroma, tumour and immune microenvironment ('STIM' classification). DESIGN: We applied virtual deconvolution to transcriptomic data from ~900 iCCAs, enabling us to devise a novel classification by selecting for the most relevant TME components. Murine models were generated through hydrodynamic tail vein injection and compared with the human disease. RESULTS: iCCA is composed of five robust STIM classes encompassing both inflamed (35%) and non-inflamed profiles (65%). The inflamed classes, named immune classical (~10%) and inflammatory stroma (~25%), differ in oncogenic pathways and extent of desmoplasia, with the inflammatory stroma showing T cell exhaustion, abundant stroma and KRAS mutations (p<0.001). Analysis of cell-cell interactions highlights cancer-associated fibroblast subtypes as potential mediators of immune evasion. Among the non-inflamed classes, the desert-like class (~20%) harbours the lowest immune infiltration with abundant regulatory T cells (p<0.001), whereas the hepatic stem-like class (~35%) is enriched in 'M2-like' macrophages, mutations in IDH1/2 and BAP1, and FGFR2 fusions. The remaining class (tumour classical: ~10%) is defined by cell cycle pathways and poor prognosis. Comparative analysis unveils high similarity between a KRAS/p19 murine model and the inflammatory stroma class (p=0.02). The KRAS-SOS inhibitor, BI3406, sensitises a KRAS-mutant iCCA murine model to anti-PD1 therapy. CONCLUSIONS: We describe a comprehensive TME-based stratification of iCCA. Cross-species analysis establishes murine models that align closely to human iCCA for the preclinical testing of combination strategies.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Microambiente Tumoral
15.
Nature ; 610(7931): 366-372, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198801

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic, aggressive cancer that frequently progresses and spreads by metastasis to the liver1. Cancer-associated fibroblasts, the extracellular matrix and type I collagen (Col I) support2,3 or restrain the progression of PDAC and may impede blood supply and nutrient availability4. The dichotomous role of the stroma in PDAC, and the mechanisms through which it influences patient survival and enables desmoplastic cancers to escape nutrient limitation, remain poorly understood. Here we show that matrix-metalloprotease-cleaved Col I (cCol I) and intact Col I (iCol I) exert opposing effects on PDAC bioenergetics, macropinocytosis, tumour growth and metastasis. Whereas cCol I activates discoidin domain receptor 1 (DDR1)-NF-κB-p62-NRF2 signalling to promote the growth of PDAC, iCol I triggers the degradation of DDR1 and restrains the growth of PDAC. Patients whose tumours are enriched for iCol I and express low levels of DDR1 and NRF2 have improved median survival compared to those whose tumours have high levels of cCol I, DDR1 and NRF2. Inhibition of the DDR1-stimulated expression of NF-κB or mitochondrial biogenesis blocks tumorigenesis in wild-type mice, but not in mice that express MMP-resistant Col I. The diverse effects of the tumour stroma on the growth and metastasis of PDAC and on the survival of patients are mediated through the Col I-DDR1-NF-κB-NRF2 mitochondrial biogenesis pathway, and targeting components of this pathway could provide therapeutic opportunities.


Asunto(s)
Carcinoma Ductal Pancreático , Colágeno Tipo I , Receptor con Dominio Discoidina 1 , Transducción de Señal , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Colágeno Tipo I/metabolismo , Receptor con Dominio Discoidina 1/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Ratones , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Tasa de Supervivencia
16.
Nature ; 610(7931): 356-365, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198802

RESUMEN

Hepatocellular carcinoma (HCC), the fourth leading cause of cancer mortality worldwide, develops almost exclusively in patients with chronic liver disease and advanced fibrosis1,2. Here we interrogated functions of hepatic stellate cells (HSCs), the main source of liver fibroblasts3, during hepatocarcinogenesis. Genetic depletion, activation or inhibition of HSCs in mouse models of HCC revealed their overall tumour-promoting role. HSCs were enriched in the preneoplastic environment, where they closely interacted with hepatocytes and modulated hepatocarcinogenesis by regulating hepatocyte proliferation and death. Analyses of mouse and human HSC subpopulations by single-cell RNA sequencing together with genetic ablation of subpopulation-enriched mediators revealed dual functions of HSCs in hepatocarcinogenesis. Hepatocyte growth factor, enriched in quiescent and cytokine-producing HSCs, protected against hepatocyte death and HCC development. By contrast, type I collagen, enriched in activated myofibroblastic HSCs, promoted proliferation and tumour development through increased stiffness and TAZ activation in pretumoural hepatocytes and through activation of discoidin domain receptor 1 in established tumours. An increased HSC imbalance between cytokine-producing HSCs and myofibroblastic HSCs during liver disease progression was associated with increased HCC risk in patients. In summary, the dynamic shift in HSC subpopulations and their mediators during chronic liver disease is associated with a switch from HCC protection to HCC promotion.


Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular , Células Estrelladas Hepáticas , Neoplasias Hepáticas , Animales , Carcinogénesis/patología , Carcinoma Hepatocelular/patología , Proliferación Celular , Colágeno Tipo I/metabolismo , Receptor con Dominio Discoidina 1/metabolismo , Progresión de la Enfermedad , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Factor de Crecimiento de Hepatocito/metabolismo , Hepatocitos , Humanos , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/patología , Ratones , Miofibroblastos/patología
17.
Nat Metab ; 4(10): 1225-1226, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36192600
18.
Hepatol Commun ; 6(10): 2781-2797, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35945902

RESUMEN

Liver fibrosis is an aberrant wound healing response that results from chronic injury and is mediated by hepatocellular death and activation of hepatic stellate cells (HSCs). While induction of oxidative stress is well established in fibrotic livers, there is limited information on stress-mediated mechanisms of HSC activation. Cellular stress triggers an adaptive defense mechanism via master protein homeostasis regulator, heat shock factor 1 (HSF1), which induces heat shock proteins to respond to proteotoxic stress. Although the importance of HSF1 in restoring cellular homeostasis is well-established, its potential role in liver fibrosis is unknown. Here, we show that HSF1 messenger RNA is induced in human cirrhotic and murine fibrotic livers. Hepatocytes exhibit nuclear HSF1, whereas stellate cells expressing alpha smooth muscle actin do not express nuclear HSF1 in human cirrhosis. Interestingly, despite nuclear HSF1, murine fibrotic livers did not show induction of HSF1 DNA binding activity compared with controls. HSF1-deficient mice exhibit augmented HSC activation and fibrosis despite limited pro-inflammatory cytokine response and display delayed fibrosis resolution. Stellate cell and hepatocyte-specific HSF1 knockout mice exhibit higher induction of profibrogenic response, suggesting an important role for HSF1 in HSC activation and fibrosis. Stable expression of dominant negative HSF1 promotes fibrogenic activation of HSCs. Overactivation of HSF1 decreased phosphorylation of JNK and prevented HSC activation, supporting a protective role for HSF1. Our findings identify an unconventional role for HSF1 in liver fibrosis. Conclusion: Our results show that deficiency of HSF1 is associated with exacerbated HSC activation promoting liver fibrosis, whereas activation of HSF1 prevents profibrogenic HSC activation.


Asunto(s)
Actinas , Factores de Transcripción del Choque Térmico/metabolismo , Células Estrelladas Hepáticas , Actinas/genética , Animales , Citocinas/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/genética , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo
19.
Gastroenterology ; 163(6): 1658-1671.e16, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35988658

RESUMEN

BACKGROUND & AIMS: Pathogenesis of hepatocellular carcinoma (HCC), which kills millions annually, is poorly understood. Identification of risk factors and modifiable determinants and mechanistic understanding of how they impact HCC are urgently needed. METHODS: We sought early prognostic indicators of HCC in C57BL/6 mice, which we found were prone to developing this disease when fed a fermentable fiber-enriched diet. Such markers were used to phenotype and interrogate stages of HCC development. Their human relevance was tested using serum collected prospectively from an HCC/case-control cohort. RESULTS: HCC proneness in mice was dictated by the presence of congenitally present portosystemic shunt (PSS), which resulted in markedly elevated serum bile acids (BAs). Approximately 10% of mice from various sources exhibited PSS/cholemia, but lacked an overt phenotype when fed standard chow. However, PSS/cholemic mice fed compositionally defined diets, developed BA- and cyclooxygenase-dependent liver injury, which was exacerbated and uniformly progressed to HCC when diets were enriched with the fermentable fiber inulin. Such progression to cholestatic HCC associated with exacerbated cholemia and an immunosuppressive milieu, both of which were required in that HCC was prevented by impeding BA biosynthesis or neutralizing interleukin-10 or programmed death protein 1. Analysis of human sera revealed that elevated BA was associated with future development of HCC. CONCLUSIONS: PSS is relatively common in C57BL/6 mice and causes silent cholemia, which predisposes to liver injury and HCC, particularly when fed a fermentable fiber-enriched diet. Incidence of silent PSS/cholemia in humans awaits investigation. Regardless, measuring serum BA may aid HCC risk assessment, potentially alerting select individuals to consider dietary or BA interventions.


Asunto(s)
Carcinoma Hepatocelular , Enfermedades del Sistema Digestivo , Neoplasias Hepáticas , Humanos , Ratones , Animales , Neoplasias Hepáticas/etiología , Carcinoma Hepatocelular/etiología , Ratones Endogámicos C57BL , Prótesis e Implantes , Fibras de la Dieta
20.
Hepatol Commun ; 6(10): 2676-2688, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35923109

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the United States and the world; with no Food and Drug Administration-approved pharmacological treatment available, it remains an area of unmet medical need. In nonalcoholic steatohepatitis (NASH), the most important predictor of clinical outcome is the fibrosis stage. Moreover, the Food and Drug Administration recommends that clinical trials for drugs to treat this disease include patients with fibrosis stage 2 or greater. Therefore, when using animal models for investigating the pathophysiology of NAFLD and for the preclinical evaluation of new drugs, it is important that the animals develop substantial fibrosis. The aim of this study was to develop a mouse model of NAFLD that replicated the disease in humans, including obesity and progressive liver fibrosis. Agouti yellow mutant mice, which have hyperphagia, were fed a Western diet and water containing high-fructose corn syrup for 16 weeks. Mice became obese and developed glucose intolerance. Their gut microbiota showed dysbiosis with changes that replicate some of the changes described in humans with NASH. They developed NASH with activity scores of 5-6 and fibrosis, which was stage 1 after 16 weeks, and stage 3 after 12 months. Changes in liver gene expression assessed by gene-set enrichment analysis showed 90% similarity with changes in human patients with NASH. Conclusion: Ay mice, when fed a Western diet similar to that consumed by humans, develop obesity and NASH with liver histology, including fibrosis, and gene expression changes that are highly similar to the disease in humans.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Modelos Animales de Enfermedad , Fibrosis , Fructosa/efectos adversos , Humanos , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/inducido químicamente , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...