Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 131(11): 2427-2437, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30128740

RESUMEN

KEY MESSAGE: A large genetic variation, moderately high heritability, and promising prediction ability for genomic selection show that wheat breeding can substantially reduce the acrylamide forming potential in bread wheat by a reduction in its precursor asparagine. Acrylamide is a potentially carcinogenic substance that is formed in baked products of wheat via the Maillard reaction from carbonyl sources and asparagine. In bread, the acrylamide content increases almost linearly with the asparagine content of the wheat grains. Our objective was, therefore, to investigate the potential of wheat breeding to contribute to a reduction in acrylamide by decreasing the asparagine content in wheat grains. To this end, we evaluated 149 wheat varieties from Central Europe at three locations for asparagine content, as well as for sulfur content, and five important quality traits regularly assessed in bread wheat breeding. The mean asparagine content ranged from 143.25 to 392.75 mg/kg for the different wheat varieties, thus underlining the possibility to reduce the acrylamide content of baked wheat products considerably by selecting appropriate varieties. Furthermore, a moderately high heritability of 0.65 and no negative correlations with quality traits like protein content, sedimentation volume and falling number show that breeding of quality wheat with low asparagine content is feasible. Genome-wide association mapping identified few QTL for asparagine content, the largest explaining 18% of the genotypic variance. Combining these QTL with a genome-wide prediction approach yielded a mean cross-validated prediction ability of 0.62. As we observed a high genotype-by-environment interaction for asparagine content, we recommend the costly and slow laboratory analysis only for late breeding generations, while selection in early generations could be based on marker-assisted or genomic selection.


Asunto(s)
Acrilamida , Asparagina/análisis , Mapeo Cromosómico , Triticum/química , Triticum/genética , Pan , Grano Comestible/genética , Estudios de Asociación Genética , Genotipo , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo , Azufre/análisis
2.
Artículo en Inglés | MEDLINE | ID: mdl-30349689

RESUMEN

BACKGROUND: Grain legumes represent a valuable energy source in pig diets due to their high starch content. The present study was conducted to determine the content and apparent ileal digestibility (AID) of starch in different grain legume cultivars for pigs by means of both a polarimetric and enzymatic method for starch determination. METHODS: Three experiments were conducted with six barrows each which were fitted with ileal T-cannulas. In total, 18 diets including six different cultivars of faba beans (Vicia faba L.) and peas (Pisum sativum L.), five different cultivars of lupins (Lupinus luteus L., Lupinus angustifolius L.), and one diet with a soybean meal (SBM) were fed. RESULTS: The starch content of faba beans and peas was greater (P < 0.05) when determined polarimetrically than enzymatically (438 vs. 345 g/kg dry matter (DM) in faba beans and 509 vs. 390 g/kg DM in peas, respectively). Considerable lower starch contents were obtained in lupins and SBM, with 82 and 48 g/kg DM (analyzed polarimetrically) and <1.1 and 3 g/kg DM (analyzed enzymatically), respectively. Mean values for contents of neutral detergent fiber (NDF) and acid detergent fiber (ADF) in grain legumes ranged from 111 and 79 g/kg DM in peas to 248 and 207 g/kg DM in lupins, respectively. Contents of condensed tannins in the colored flowered faba bean cultivars ranged from 2.1 to 7.4 g/kg DM. The AID of starch was greater (P < 0.05) in pea than in faba bean cultivars, and using the polarimetric starch determination method resulted in greater (P < 0.05) digestibility values than using enzymatic starch analysis (84 vs. 80% in faba beans and 86 vs. 83% in peas). Moreover, AID of starch differed (P < 0.05) within pea cultivars and starch digestibility in faba beans decreased linearly (P < 0.05) as the content of condensed tannins increased. However, there was no relationship between contents of NDF and ADF and AID of starch in pea and faba bean cultivars. CONCLUSION: Both contents and AID of starch in grain legumes can vary as influenced by the analytical method used for starch determination. Generally, starch digestibility is greater when measured by polarimetric rather than enzymatic methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA