Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712082

RESUMEN

PARP14 is a 203 kDa multi-domain protein that is primarily known as an ADP-ribosyltransferase, and is involved in a variety of cellular functions including DNA damage, microglial activation, inflammation, and cancer progression. In addition, PARP14 is upregulated by interferon (IFN), indicating a role in the antiviral response. Furthermore, PARP14 has evolved under positive selection, again indicating that it is involved in host-pathogen conflict. We found that PARP14 is required for increased IFN-I production in response to coronavirus infection lacking ADP-ribosylhydrolase (ARH) activity and poly(I:C), however, whether it has direct antiviral function remains unclear. Here we demonstrate that the catalytic activity of PARP14 enhances IFN-I and IFN-III responses and restricts ARH-deficient murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. To determine if PARP14's antiviral functions extended beyond CoVs, we tested the ability of herpes simplex virus 1 (HSV-1) and several negative-sense RNA viruses, including vesicular stomatitis virus (VSV), Ebola virus (EBOV), and Nipah virus (NiV), to infect A549 PARP14 knockout (KO) cells. HSV-1 had increased replication in PARP14 KO cells, indicating that PARP14 restricts HSV-1 replication. In contrast, PARP14 was critical for the efficient infection of VSV, EBOV, and NiV, with EBOV infectivity at less than 1% of WT cells. A PARP14 active site inhibitor had no impact on HSV-1 or EBOV infection, indicating that its effect on these viruses was independent of its catalytic activity. These data demonstrate that PARP14 promotes IFN production and has both pro- and anti-viral functions targeting multiple viruses.

2.
J Virol ; 97(9): e0088523, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37695054

RESUMEN

ADP-ribosyltransferases (ARTs) mediate the transfer of ADP-ribose from NAD+ to protein or nucleic acid substrates. This modification can be removed by several different types of proteins, including macrodomains. Several ARTs, also known as PARPs, are stimulated by interferon indicating ADP-ribosylation is an important aspect of the innate immune response. All coronaviruses (CoVs) encode for a highly conserved macrodomain (Mac1) that is critical for CoVs to replicate and cause disease, indicating that ADP-ribosylation can effectively control coronavirus infection. Our siRNA screen indicated that PARP12 might inhibit the replication of a murine hepatitis virus (MHV) Mac1 mutant virus in bone-marrow-derived macrophages (BMDMs). To conclusively demonstrate that PARP12 is a key mediator of the antiviral response to CoVs both in cell culture and in vivo, we produced PARP12-/-mice and tested the ability of MHV A59 (hepatotropic/neurotropic) and JHM (neurotropic) Mac1 mutant viruses to replicate and cause disease in these mice. Notably, in the absence of PARP12, Mac1 mutant replication was increased in BMDMs and mice. In addition, liver pathology was also increased in A59-infected mice. However, the PARP12 knockout did not restore Mac1 mutant virus replication to WT virus levels in all cell or tissue types and did not significantly increase the lethality of Mac1 mutant viruses. These results demonstrate that while PARP12 inhibits MHV Mac1 mutant virus infection, additional PARPs or innate immune factors must contribute to the extreme attenuation of this virus in mice. IMPORTANCE Over the last decade, the importance of ADP-ribosyltransferases (ARTs), also known as PARPs, in the antiviral response has gained increased significance as several were shown to either restrict virus replication or impact innate immune responses. However, there are few studies showing ART-mediated inhibition of virus replication or pathogenesis in animal models. We found that the CoV macrodomain (Mac1) was required to prevent ART-mediated inhibition of virus replication in cell culture. Using knockout mice, we found that PARP12, an interferon-stimulated ART, was required to repress the replication of a Mac1 mutant CoV both in cell culture and in mice, demonstrating that PARP12 represses coronavirus replication. However, the deletion of PARP12 did not fully rescue Mac1 mutant virus replication or pathogenesis, indicating that multiple PARPs function to counter coronavirus infection.


Asunto(s)
Genes Virales , Virus de la Hepatitis Murina , Mutación , Poli(ADP-Ribosa) Polimerasas , Replicación Viral , Animales , Ratones , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Interferones/inmunología , Ratones Noqueados , Virus de la Hepatitis Murina/genética , Virus de la Hepatitis Murina/crecimiento & desarrollo , Virus de la Hepatitis Murina/metabolismo , Virus de la Hepatitis Murina/patogenicidad , Especificidad de Órganos , Poli(ADP-Ribosa) Polimerasas/deficiencia , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Replicación Viral/genética , Línea Celular
3.
bioRxiv ; 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37398292

RESUMEN

ADP-ribosyltransferases (ARTs) mediate the transfer of ADP-ribose from NAD + to protein or nucleic acid substrates. This modification can be removed by several different types of proteins, including macrodomains. Several ARTs, also known as PARPs, are stimulated by interferon, indicating ADP-ribosylation is an important aspect of the innate immune response. All coronaviruses (CoVs) encode for a highly conserved macrodomain (Mac1) that is critical for CoVs to replicate and cause disease, indicating that ADP-ribosylation can effectively control coronavirus infection. Our siRNA screen indicated that PARP12 might inhibit the replication of a MHV Mac1 mutant virus in bone-marrow derived macrophages (BMDMs). To conclusively demonstrate that PARP12 is a key mediator of the antiviral response to CoVs both in cell culture and in vivo , we produced PARP12 -/- mice and tested the ability of MHV A59 (hepatotropic/neurotropic) and JHM (neurotropic) Mac1 mutant viruses to replicate and cause disease in these mice. Notably, in the absence of PARP12, Mac1 mutant replication was increased in BMDMs and in mice. In addition, liver pathology was also increased in A59 infected mice. However, the PARP12 knockout did not restore Mac1 mutant virus replication to WT virus levels in all cell or tissue types and did not significantly increase the lethality of Mac1 mutant viruses. These results demonstrate that while PARP12 inhibits MHV Mac1 mutant virus infection, additional PARPs or innate immune factors must contribute to the extreme attenuation of this virus in mice. IMPORTANCE: Over the last decade, the importance of ADP-ribosyltransferases (ARTs), also known as PARPs, in the antiviral response has gained increased significance as several were shown to either restrict virus replication or impact innate immune responses. However, there are few studies showing ART-mediated inhibition of virus replication or pathogenesis in animal models. We found that the CoV macrodomain (Mac1) was required to prevent ART-mediated inhibition of virus replication in cell culture. Here, using knockout mice, we found that PARP12, an interferon-stimulated ART, was required to repress the replication of a Mac1 mutant CoV both in cell culture and in mice, demonstrating that PARP12 represses coronavirus replication. However, the deletion of PARP12 did not fully rescue Mac1 mutant virus replication or pathogenesis, indicating that multiple PARPs function to counter coronavirus infection.

4.
Infect Immun ; 89(11): e0034321, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34424752

RESUMEN

The ability of Enterococcus faecalis to colonize host anatomical sites is dependent on its adaptive response to host conditions. Three glycosyl hydrolase gene clusters, each belonging to glycosyl hydrolase family 18 (GH18) (ef0114, ef0361, and ef2863), in E. faecalis were previously found to be upregulated under glucose-limiting conditions. The GH18 catalytic domain is present in proteins that are classified as either chitinases or ß-1,4 endo-ß-N-acetylglucosaminidases (ENGases) based on their ß-1,4 endo-N-acetyl-ß-d-glucosaminidase activity, and ENGase activity is commonly associated with cleaving N-linked glycoprotein, an abundant glycan structure on host epithelial surfaces. Here, we show that all three hydrolases are negatively regulated by the transcriptional regulator carbon catabolite protein A (CcpA). Additionally, we demonstrate that a constitutively active CcpA variant represses the expression of CcpA-regulated genes irrespective of glucose availability. Previous studies showed that the GH18 catalytic domains of EndoE (EF0114) and EfEndo18A (EF2863) were capable of deglycosylating RNase B, a model high-mannose-type glycoprotein. However, it remained uncertain which glycosidase is primarily responsible for the deglycosylation of high-mannose-type glycoproteins. In this study, we show by mutation analysis as well as a dose-dependent analysis of recombinant protein expression that EfEndo18A is primarily responsible for deglycosylating high-mannose glycoproteins and that the glycans removed by EfEndo18A support growth under nutrient-limiting conditions in vitro. In contrast, IgG is representative of a complex-type glycoprotein, and we demonstrate that the GH18 domain of EndoE is primarily responsible for the removal of this glycan decoration. Finally, our data highlight the combined contribution of glycosidases to the virulence of E. faecalis in vivo.


Asunto(s)
Enterococcus faecalis/metabolismo , Glicósido Hidrolasas/fisiología , Proteínas Bacterianas/fisiología , Biopelículas , Dominio Catalítico , Enterococcus faecalis/genética , Enterococcus faecalis/patogenicidad , Regulación Bacteriana de la Expresión Génica , Manosa/metabolismo , Nutrientes/metabolismo , Polisacáridos/metabolismo , Ribonucleasas/metabolismo , Sitio de Iniciación de la Transcripción
5.
J Virol ; 95(15): e0076621, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34011547

RESUMEN

All coronaviruses (CoVs) contain a macrodomain, also termed Mac1, in nonstructural protein 3 (nsp3) that binds and hydrolyzes mono-ADP-ribose (MAR) covalently attached to proteins. Despite several reports demonstrating that Mac1 is a prominent virulence factor, there is still a limited understanding of its cellular roles during infection. Currently, most of the information regarding the role of CoV Mac1 during infection is based on a single point mutation of a highly conserved asparagine residue, which makes contact with the distal ribose of ADP-ribose. To determine if additional Mac1 activities contribute to CoV replication, we compared the replication of murine hepatitis virus (MHV) Mac1 mutants, D1329A and N1465A, to the previously mentioned asparagine mutant, N1347A. These residues contact the adenine and proximal ribose in ADP-ribose, respectively. N1465A had no effect on MHV replication or pathogenesis, while D1329A and N1347A both replicated poorly in bone marrow-derived macrophages (BMDMs), were inhibited by PARP enzymes, and were highly attenuated in vivo. Interestingly, D1329A was also significantly more attenuated than N1347A in all cell lines tested. Conversely, D1329A retained some ability to block beta interferon (IFN-ß) transcript accumulation compared to N1347A, indicating that these mutations have different effects on Mac1 functions. Combining these two mutations resulted in a virus that was unrecoverable, suggesting that the combined activities of Mac1 are essential for MHV replication. We conclude that Mac1 has multiple functions that promote the replication of MHV, and that these results provide further evidence that Mac1 is a prominent target for anti-CoV therapeutics. IMPORTANCE In the wake of the COVID-19 epidemic, there has been a surge to better understand how CoVs replicate and to identify potential therapeutic targets that could mitigate disease caused by SARS-CoV-2 and other prominent CoVs. The highly conserved macrodomain, also termed Mac1, is a small domain within nonstructural protein 3. It has received significant attention as a potential drug target, as previous studies demonstrated that it is essential for CoV pathogenesis in multiple animal models of infection. However, the functions of Mac1 during infection remain largely unknown. Here, using targeted mutations in different regions of Mac1, we found that Mac1 has multiple functions that promote the replication of MHV, a model CoV, and, therefore, is more important for MHV replication than previously appreciated. These results will help guide the discovery of these novel functions of Mac1 and the development of inhibitory compounds targeting this domain.


Asunto(s)
Virus de la Hepatitis Murina/fisiología , Mutación Missense , Proteínas no Estructurales Virales , Replicación Viral/genética , Sustitución de Aminoácidos , Animales , Células HeLa , Humanos , Macrófagos/metabolismo , Macrófagos/virología , Ratones , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
6.
bioRxiv ; 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33821264

RESUMEN

All coronaviruses (CoVs) contain a macrodomain, also termed Mac1, in non-structural protein 3 (nsp3) which binds and hydrolyzes ADP-ribose covalently attached to proteins. Despite several reports demonstrating that Mac1 is a prominent virulence factor, there is still a limited understanding of its cellular roles during infection. Currently, most of the information regarding the role of CoV Mac1 during infection is based on a single point mutant of a highly conserved asparagine-to-alanine mutation, which is known to largely eliminate Mac1 ADP-ribosylhydrolase activity. To determine if Mac1 ADP-ribose binding separately contributes to CoV replication, we compared the replication of a murine hepatitis virus (MHV) Mac1 mutant predicted to dramatically reduce ADP-ribose binding, D1329A, to the previously mentioned asparagine mutant, N1347A. D1329A and N1347A both replicated poorly in bone-marrow derived macrophages (BMDMs), were inhibited by PARP enzymes, and were highly attenuated in vivo . However, D1329A was significantly more attenuated than N1347A in all cell lines tested that were susceptible to MHV infection. In addition, D1329A retained some ability to block IFN-ß transcript accumulation compared to N1347A, indicating that these two mutants impacted distinct Mac1 functions. Mac1 mutants predicted to eliminate both binding and hydrolysis activities were unrecoverable, suggesting that the combined activities of Mac1 may be essential for MHV replication. We conclude that Mac1 has multiple roles in promoting the replication of MHV, and that these results provide further evidence that Mac1 could be a prominent target for anti-CoV therapeutics. IMPORTANCE: In the wake of the COVID-19 epidemic, there has been a surge to better understand how CoVs replicate, and to identify potential therapeutic targets that could mitigate disease caused by SARS-CoV-2 and other prominent CoVs. The highly conserved macrodomain, also termed Mac1, is a small domain within non-structural protein 3. It has received significant attention as a potential drug target as previous studies demonstrated that it is essential for CoV pathogenesis in multiple animal models of infection. However, the various roles and functions of Mac1 during infection remain largely unknown. Here, utilizing recombinant Mac1 mutant viruses, we have determined that different biochemical functions of Mac1 have distinct roles in the replication of MHV, a model CoV. These results indicate that Mac1 is more important for CoV replication than previously appreciated, and could help guide the development of inhibitory compounds that target unique regions of this protein domain.

7.
J Bacteriol ; 202(17)2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32540933

RESUMEN

Enterococcus faecalis is an opportunistic pathogen capable of causing infections, including endocarditis and urinary tract infections (UTI). One of the well-characterized quorum-sensing pathways in E. faecalis involves coordination of the conjugal transfer of pheromone-responsive plasmids by PrgX, a member of the RRNPP protein family. Members of this protein family in various Firmicutes have also been shown to contribute to numerous cellular processes, including sporulation, competence, conjugation, nutrient sensing, biofilm formation, and virulence. As PrgX is a plasmid-encoded RRNPP family member, we surveyed the genome of the multidrug-resistant strain V583 for additional RRNPP homologs using computational searches and refined those identified hits for predicted structural similarities to known RRNPP family members. This led us to investigate the contribution of the chromosomally encoded RRNPP homologs to biofilm processes and pathogenesis in a catheter-associated urinary tract infection (CAUTI) model. In this study, we identified five such homologs and report that 3 of the 5 homologs, EF0073, EF1599, and EF1316, affect biofilm formation as well as outcomes in the CAUTI model.IMPORTANCEEnterococcus faecalis causes health care-associated infections and displays resistance to a variety of broad-spectrum antibiotics by acquisition of resistance traits as well as the ability to form biofilms. Even though a growing number of factors related to biofilm formation have been identified, mechanisms that contribute to biofilm formation are still largely unknown. Members of the RRNPP protein family regulate a diverse set of biological reactions in low-G+C Gram-positive bacteria (Firmicutes). Here, we identify three predicted structural homologs of the RRNPP family, EF0073, EF1599, and EF1316, which affect biofilm formation and CAUTI pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Enterococcus faecalis/metabolismo , Infecciones Urinarias/microbiología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos
8.
J Pharm Sci ; 97(12): 5376-85, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18383338

RESUMEN

The pharmacokinetics of DS-96, an N-alkylhomospermine analog designed to sequester bacterial lipopolysaccharides, has been determined in rodent species. The elimination half-life in mice and rats are about 400 and 500 min, respectively, with other PK parameters being quite similar in the two rodent species. Interestingly, the mouse intravenous plasma concentration time curves exhibit an apparent absorption phase. While the rat intravenous data did not exhibit a pronounced apparent absorption phase immediately following injection, plasma levels did increase between 10 and 30 min following an expected drop from time 0 to 5 min. The data are consistent with first-pass uptake, possibly by the lung, with back diffusion as a function of time. The observed C(max) values of 1.36 microg/mL in the mouse intraperitoneal model suggest that a plasma concentration of 0.5-1 microg/mL corresponds to complete protection for a 200 ng/animal dose of intraperitoneally administered LPS in the D-galactosamine-primed model of endotoxin-induced lethality.


Asunto(s)
Lipopolisacáridos/metabolismo , Espermina/análogos & derivados , Animales , Espectroscopía de Resonancia Magnética , Ratones , Ratas , Espermina/farmacocinética
9.
J Pharm Sci ; 93(10): 2585-94, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15349968

RESUMEN

In this study, we report the formulation and in vivo evaluation of etomidate in an aqueous solution using sulfobutyl ether-7 beta-cyclodextrin (SBE-CD, Captisol) as a solubilizing agent. The phase-solubility behavior of etomidate as a function of SBE-CD concentration was evaluated, and accelerated solution stability studies of 2 mg/mL etomidate in a 5% w/v SBE-CD solution were conducted. The intravenous administration of the SBE-CD etomidate formulation in dogs was compared with Amidate, the commercial etomidate drug product formulated with propylene glycol as a cosolvent. The etomidate plasma concentration-time data were fit to a three-compartment mamillary model and the derived standard pharmacokinetic parameters were not statistically different between the two formulations (n = 4, p > 0.050). Concurrent pharmacodynamic analysis provided statistically equivalent maximum effects and median inhibitory concentrations for the two formulations. In vivo hemolysis after intravenous administration of Amidate was 10-fold higher than the SBE-CD formulation. Whereas Amidate cannot be given subcutaneously because of the cosolvent in the formulation, a 12 mg/mL aqueous solution of etomidate in 20% (w/v) SBE-CD was well tolerated by this route. The results suggest that the SBE-CD formulation is a viable clinical drug product with a reduced side-effect profile.


Asunto(s)
Adyuvantes Farmacéuticos/farmacología , Etomidato/farmacocinética , beta-Ciclodextrinas/farmacología , Adyuvantes Farmacéuticos/efectos adversos , Adyuvantes Farmacéuticos/química , Animales , Química Farmacéutica , Cromatografía Líquida de Alta Presión , Perros , Estabilidad de Medicamentos , Etomidato/efectos adversos , Etomidato/química , Hemólisis , Técnicas In Vitro , Inyecciones Intravenosas , Inyecciones Subcutáneas , Masculino , Modelos Biológicos , Soluciones Farmacéuticas , Propilenglicol , Solubilidad , Factores de Tiempo , beta-Ciclodextrinas/efectos adversos , beta-Ciclodextrinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...