Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Eur Respir J ; 63(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423623

RESUMEN

BACKGROUND: Our objective was to investigate the effect of a day-long exposure to high altitude on peak exercise capacity and safety in stable patients with pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). METHODS: In a randomised controlled crossover trial, stable patients with PAH or distal CTEPH without resting hypoxaemia at low altitude performed two incremental exercise tests to exhaustion: one after 3-5 h at high altitude (2500 m) and one at low altitude (470 m). RESULTS: In 27 patients with PAH/CTEPH (44% females, mean±sd age 62±14 years), maximal work rate was 110±64 W at 2500 m and 123±64 W at 470 m (-11%, 95% CI -16- -11%; p<0.001). Oxygen saturation measured by pulse oximetry and arterial oxygen tension at end-exercise were 83±6% versus 91±6% and 6.1±1.9 versus 8.6±1.9 kPa (-8% and -29%; both p<0.001) at 2500 versus 470 m, respectively. Maximal oxygen uptake was 17.8±7.5 L·min-1·kg-1 at high altitude versus 20±7.4 L·min-1·kg-1 at low altitude (-11%; p<0.001). At end-exercise, the ventilatory equivalent for carbon dioxide was 43±9 at 2500 m versus 39±9 at 470 m (9%, 95% CI 2-6%; p=0.002). No adverse events occurred during or after exercise. CONCLUSIONS: Among predominantly low-risk patients with stable PAH/CTEPH, cycling exercise during the first day at 2500 m was well tolerated, but peak exercise capacity, blood oxygenation and ventilatory efficiency were lower compared with 470 m.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Femenino , Humanos , Persona de Mediana Edad , Anciano , Masculino , Altitud , Estudios Cruzados , Hipertensión Pulmonar Primaria Familiar , Prueba de Esfuerzo , Oxígeno/uso terapéutico
2.
Respiration ; 103(3): 124-133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38382479

RESUMEN

INTRODUCTION: Acetazolamide (AZA) improves nocturnal and daytime blood oxygenation in patients with pulmonary vascular disease (PVD), defined as pulmonary arterial and distal chronic thromboembolic pulmonary hypertension (CTEPH), and may improve exercise performance. METHODS: We investigated the effect of 5 weeks of AZA (250 mg bid) versus placebo on maximal load during incremental cycling ramp exercise in patients with PVD studied in a randomized controlled, double-blind, crossover design, separated by > 2 weeks of washout. RESULTS: Twenty-five patients (12 pulmonary arterial hypertension, 13 CTEPH, 40% women, age 62 ± 15 years) completed the trial according to the protocol. Maximum load was similar after 5 weeks of AZA versus placebo (113 ± 9 vs. 117 ± 9 watts [W]), mean difference -4 W (95% CI: -9 to 1, p = 0.138). With AZA, maximum (max)-exercise partial pressure of O2 (PaO2) was significantly higher by 1.1 kPa (95% CI: 0.5-1.8, p = 0.003), while arterial pH and partial pressure of CO2 were significantly lower. Gas exchange threshold was reached at a higher load with AZA (108 ± 8 W vs. 97 ± 8 W) and was therefore delayed by 11 W (95% CI: 3-19, p = 0.013), while the ventilatory equivalent for O2 and CO2 were significantly higher at both the max-exercise and gas exchange threshold with AZA versus placebo. CONCLUSION: AZA for 5 weeks did not significantly change maximum exercise capacity in patients with PVD despite a significant increase in PaO2. The beneficial effects of increased blood oxygenation may have been diminished by increased ventilation due to AZA-induced metabolic acidosis and increased dyspnea.

4.
J Sleep Res ; 33(2): e13943, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37197997

RESUMEN

There is strong evidence for clinically relevant night-to-night variability of respiratory events in patients with suspected obstructive sleep apnea. Sleep experts retrospectively evaluated diagnostic data in 56 patients with suspected obstructive sleep apnea. Experts were blinded to the fact that they were diagnosing the same case twice, once based on a short report of a single in-laboratory respiratory polygraphy and once with the additional information of 14 nights of pulse oximetry at home. All experts (n = 22) were highly qualified, 13 experts (59.1%) treated > 100 patients with suspected obstructive sleep apnea per year. In 12 patients, the apnea-hypopnea index in the respiratory polygraphy was < 5 per hr, but the mean oxygen desaturation index of 14 nights of pulse oximetry was ≥ 5 per hr. The additional information of 14 nights of pulse oximetry helped to diagnose obstructive sleep apnea with a 70% consensus in two of those patients (16.7% [95% confidence interval: 4.7/44.8]). In eight patients, experts could not agree to a 70% consensus regarding continuous positive airway pressure therapy recommendation after respiratory polygraphy. The additional information of multiple-night testing led to a consensus in three of those cases (37.5% [95% confidence interval: 14/69]). Change of obstructive sleep apnea diagnosis and continuous positive airway pressure recommendation was significantly negatively associated with the number of treated obstructive sleep apnea patients > 100 per year compared with 0-29 patients per year (Coef. [95% confidence interval] -0.63 [-1.22/-0.04] and -0.61 [-1.07/-0.15], respectively). Experts found already a high level of consensus regarding obstructive sleep apnea diagnosis, severity and continuous positive airway pressure recommendation after a single respiratory polygraphy. However, longitudinal sleep monitoring could help increase consensus in selected patients with diagnostic uncertainty.


Asunto(s)
Apnea Obstructiva del Sueño , Humanos , Polisomnografía , Estudios Retrospectivos , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/terapia , Sueño , Oximetría
5.
J Cardiovasc Dev Dis ; 10(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37998500

RESUMEN

BACKGROUND: Pulmonary endarterectomy (PEA) is the treatment of choice for patients with chronic thromboembolic pulmonary hypertension (CTEPH) with accessible lesions. Breathing pure oxygen (hyperoxia) during right heart catheterization (RHC) allows for the calculation of the right-to-left shunt fraction (Qs/Qt). In the absence of intracardiac shunt, Qs/Qt can be used as a marker of ventilation-perfusion mismatch in patients with CTEPH. This study involved investigating Qs/Qt after PEA and its relation to other disease-specific outcomes. STUDY DESIGN AND METHODS: This study is a retrospective study that focuses on patients with operable CTEPH who had Qs/Qt assessment during RHC before and 1 year after PEA. Additionally, 6 min walking distance (6MWD), WHO functional class (WHO-FC), and NT-proBNP were assessed to calculate a four-strata risk score. RESULTS: Overall, 16 patients (6 females) with a median age of 66 years (quartiles 55; 74) were included. After PEA, an improvement in mean pulmonary artery pressure (38 [32; 41] to 24 [18; 28] mmHg), pulmonary vascular resistance (5.7 [4.0; 6.8] to 2.5 [1.4; 3.8] WU), oxygen saturation (92 [88; 93]% to 94 [93; 95]%), WHO-FC, and risk score was observed (all p < 0.05). No improvement in median Qs/Qt could be detected (13.7 [10.0; 17.5]% to 13.0 [11.2; 15.6]%, p = 0.679). A total of 7 patients with improved Qs/Qt had a significant reduction in risk score compared to those without improved Qs/Qt. CONCLUSION: PEA did not alter Qs/Qt assessed after 1 year in operable CTEPH despite an improvement in hemodynamics and risk score, potentially indicating a persistent microvasculopathy. In patients whose shunt fraction improved with PEA, the reduced shunt was associated with an improvement in risk score.

6.
ERJ Open Res ; 9(5)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37753275

RESUMEN

Background: The course of pulmonary arterial wedge pressure (PAWP) during exercise in patients with pulmonary arterial or chronic thromboembolic pulmonary hypertension (PAH/CTEPH), further abbreviated as pulmonary vascular disease (PVD), is still unknown. The aim of the study was to describe PAWP during exercise in patients with PVD. Methods: In this cross-sectional study, right heart catheter (RHC) data including PAWP, recorded during semi-supine, stepwise cycle exercise in patients with PVD, were analysed retrospectively. We investigated PAWP changes during exercise until end-exercise. Results: In 121 patients (59 female, 66 CTEPH, 55 PAH, 62±17 years) resting PAWP was 10.2±4.1 mmHg. Corresponding peak changes in PAWP during exercise were +2.9 mmHg (95% CI 2.1-3.7 mmHg, p<0.001). Patients ≥50 years had a significantly higher increase in PAWP during exercise compared with those <50 years (p<0.001). The PAWP/cardiac output (CO) slopes were 3.9 WU for all patients, and 1.6 WU for patients <50 years and 4.5 WU for those ≥50 years. Conclusion: In patients with PVD, PAWP increased slightly but significantly with the onset of exercise compared to resting values. The increase in PAWP during exercise was age-dependent, with patients ≥50 years showing a rapid PAWP increase even with minimal exercise. PAWP/CO slopes >2 WU are common in patients with PVD aged ≥50 years without exceeding the PAWP of 25 mmHg during exercise.

7.
ERJ Open Res ; 9(5)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37727676

RESUMEN

Background: Cardiomyopathy has become an important life-limiting factor since survival in Duchenne muscular dystrophy (DMD) has greatly increased with long-term ventilation and cough assistance. The aim of this study was to investigate the association between impaired left ventricular ejection fraction (LVEF) and survival. Methods: In a >20-year observational study in patients with DMD (age ≥16 years) with at least three echocardiograms, the association between LVEF and survival and time to cardiac or non-cardiac death was investigated using Kaplan-Meier survival analysis and Cox regression (for LVEF). Results: In 67 DMD patients (430 echocardiograms), the decrease in LVEF over a mean±sd follow-up period of 9.1±5.1 years was -10.0±13.9% absolute, but LVEF progression varied widely. 84% were receiving an angiotensin-converting enzyme inhibitor and 54% a ß-blocker at last follow-up with an LVEF of 37.5±12.4% at that time-point. Median (interquartile range) survival was 33 (25-40) years. 28 out of 67 (42%) of the cohort had died and LVEF was a significant negative predictor of survival (hazard ratio 0.95 (95% CI 0.91-0.99); p<0.007). Those who died of cardiac death (53% of known causes of death) had significantly lower LVEF at the time of death (LVEF -11.0% (95% CI -21.1- -0.9%); p=0.035) compared with non-cardiac death and tended to die at a younger age. Conclusions: Cardiomyopathy with systolic heart failure is the leading cause of death and lower LVEF is an independent predictor of mortality at younger ages in patients with DMD. Patients with DMD appear to be undertreated with respect to heart failure drug therapy.

8.
EClinicalMedicine ; 62: 102112, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37654667

RESUMEN

Background: Hypoglossal nerve stimulation (HNS) for obstructive sleep apnoea (OSA) is a novel way to manage the condition. We hypothesised that in patients with OSA and limited adherence to continuous positive airway pressure (CPAP) therapy, domiciliary transcutaneous electrical stimulation (TESLA) would control sleep apnoea and provide health benefits. Methods: We undertook a single-centre, open-label, randomised, controlled phase III trial in patients with OSA (apnoea-hypopnoea-index [AHI] 5-35 h-1), a BMI of 18.5-32 kg∗m-2, and a documented lack of adherence to CPAP therapy (<4 h∗night-1) at Guy's & St Thomas' NHS Foundation Trust (hospital), UK. Patients were randomly assigned (1:1) using minimisation (gender and OSA severity) to receive TESLA or usual care (CPAP) for at least 3 months; sleep study analysis was provided without knowledge of the assignment arm. The primary outcome was change in AHI at 3-months. The primary outcome and safety were analysed in the intention-to-treat population. Data are reported as median (interquartile range), unless otherwise explained. This trial is registered at ClinicalTrials.gov, NCT03160456. Findings: Between 6 June 2018 and 7 February 2023, 56 participants were enrolled and randomly assigned (29 patients in the intervention group and 27 in the usual care group). Patients were followed up for a median of 3.0 months (IQR 3.0; 10.0). The groups were similar in terms of age (55.8 (48.2; 66.0) vs 59.3 (47.8; 64.4) years), gender (male:female, 19:10 vs 18:9) and BMI (28.7 (26.4; 31.9) vs 28.4 (24.4; 31.9) kg∗m-2). The unadjusted group difference in the ΔAHI was -11.5 (95% CI -20.7; -2.3) h-1 (p = 0.016). Adjusted for the baseline value, the difference was ΔAHI -7.0 (-15.7; 1.8) h-1 (p = 0.12), in favour of the intervention. Minor adverse events were found in one of the participants who developed mild headaches related to the intervention. Interpretation: Domiciliary TESLA can be used safely and effectively in OSA patients with poor adherence to CPAP, with favourable impact on sleepiness and sleep fragmentation. Despite pandemic-related limitations of the amended protocol this trial provides the evidence that TESLA improves clinically meaningful outcomes over the observed follow up period, and the transcutaneous approach is likely to offer an affordable alternative for responders to electrical stimulation in clinical practice. Funding: British Lung Foundation, United Kingdom Clinical Research Collaboration-registered King's Clinical Trials Unit at King's Health Partners.

9.
ERJ Open Res ; 9(2)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37009023

RESUMEN

Background: The aim of this study was to investigate the overall and differential effect of breathing hyperoxia (inspiratory oxygen fraction (F IO2 ) 0.5) versus placebo (ambient air, F IO2 0.21) to enhance exercise performance in healthy people, patients with pulmonary vascular disease (PVD) with precapillary pulmonary hypertension (PH), COPD, PH due to heart failure with preserved ejection fraction (HFpEF) and cyanotic congenital heart disease (CHD) using data from five randomised controlled trials performed with identical protocols. Methods: 91 subjects (32 healthy, 22 with PVD with pulmonary arterial or distal chronic thromboembolic PH, 20 with COPD, 10 with PH in HFpEF and seven with CHD) performed two cycle incremental (IET) and two constant work-rate exercise tests (CWRET) at 75% of maximal load (Wmax), each with ambient air and hyperoxia in single-blinded, randomised, controlled, crossover trials. The main outcomes were differences in Wmax (IET) and cycling time (CWRET) with hyperoxia versus ambient air. Results: Overall, hyperoxia increased Wmax by +12 W (95% CI: 9-16, p<0.001) and cycling time by +6:13 min (4:50-7:35, p<0.001), with improvements being highest in patients with PVD (Wmax/min: +18%/+118% versus COPD: +8%/+60%, healthy: +5%/+44%, HFpEF: +6%/+28%, CHD: +9%/+14%). Conclusion: This large sample of healthy subjects and patients with various cardiopulmonary diseases confirms that hyperoxia significantly prolongs cycling exercise with improvements being highest in endurance CWRET and patients with PVD. These results call for studies investigating optimal oxygen levels to prolong exercise time and effects on training.

10.
J Clin Med ; 12(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36902567

RESUMEN

Pulmonary vascular diseases (PVDs), defined as arterial or chronic thromboembolic pulmonary hypertension, are associated with autonomic cardiovascular dysregulation. Resting heart rate variability (HRV) is commonly used to assess autonomic function. Hypoxia is associated with sympathetic overactivation and patients with PVD might be particularly vulnerable to hypoxia-induced autonomic dysregulation. In a randomised crossover trial, 17 stable patients with PVD (resting PaO2 ≥ 7.3 kPa) were exposed to ambient air (FiO2 = 21%) and normobaric hypoxia (FiO2 = 15%) in random order. Indices of resting HRV were derived from two nonoverlapping 5-10-min three-lead electrocardiography segments. We found a significant increase in all time- and frequency-domain HRV measures in response to normobaric hypoxia. There was a significant increase in root mean squared sum difference of RR intervals (RMSSD; 33.49 (27.14) vs. 20.76 (25.19) ms; p < 0.01) and RR50 count divided by the total number of all RR intervals (pRR50; 2.75 (7.81) vs. 2.24 (3.39) ms; p = 0.03) values in normobaric hypoxia compared to ambient air. Both high-frequency (HF; 431.40 (661.56) vs. 183.70 (251.25) ms2; p < 0.01) and low-frequency (LF; 558.60 (746.10) vs. 203.90 (425.63) ms2; p = 0.02) values were significantly higher in normobaric hypoxia compared to normoxia. These results suggest a parasympathetic dominance during acute exposure to normobaric hypoxia in PVD.

11.
Heart Fail Clin ; 19(1S): e1-e11, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36922056

RESUMEN

Main pulmonary vascular diseases (PVD) with precapillary pulmonary hypertension (PH) are pulmonary arterial and chronic thromboembolic PH. Guidelines recommend supplemental oxygen therapy (SOT) for severely hypoxemic patients with PH, but evidence is scarce. The authors performed a systematic review and where possible meta-analyses on the effects of SOT on hemodynamics and exercise performance in patients with PVD. In PVD, short-term SOT significantly improved mean pulmonary artery pressure and exercise performance. There is growing evidence on the benefit of long-term SOT for selected patients with PVD regarding exercise capacity and maybe even survival.


Asunto(s)
Hipertensión Pulmonar , Enfermedades Vasculares , Humanos , Circulación Pulmonar , Arteria Pulmonar , Hemodinámica , Oxígeno/uso terapéutico
12.
Expert Rev Respir Med ; 17(12): 1221-1235, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38198636

RESUMEN

INTRODUCTION: Sleep-disordered breathing (SDB), especially obstructive sleep apnea (OSA), is commonly associated with respiratory diseases, such as COPD, asthma and interstitial lung disease. AREAS COVERED: This narrative review aims to comprehensively synthesize the existing information on SDB in respiratory diseases, investigate the role of gender in this association, and highlight the importance of OSA management in improving sleep, quality of life, and disease prognosis in these specific patient populations. EXPERT OPINION: Research indicates a synergistic link between OSA and chronic respiratory diseases, which leads to greater morbidity and mortality compared to each disorder alone. Given the lack of an optimal OSA screening tool for these patients, a comprehensive patient approach and overnight diagnostic sleep study are imperative. Despite the limited evidence available, it seems that gender has an impact on the prevalence, severity, and susceptibility of this coexistence. Recognizing the role of gender in the coexistence of OSA and other respiratory diseases can enhance everyday medical practice and enable clinicians to adopt a more personalized approach toward optimal screening and diagnosis of these patients.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Síndromes de la Apnea del Sueño , Apnea Obstructiva del Sueño , Humanos , Calidad de Vida , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/epidemiología , Síndromes de la Apnea del Sueño/complicaciones , Asma/complicaciones
13.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430527

RESUMEN

The direct pathophysiological effects of obstructive sleep apnea (OSA) have been well described. However, the systemic and metabolic consequences of OSA are less well understood. The aim of this secondary analysis was to translate recent findings in healthy subjects on vigilance-state-dependent metabolism into the context of OSA patients and answer the question of how symptomatic OSA influences metabolism and whether these changes might explain metabolic and cardiovascular consequences of OSA. Patients with suspected OSA were assigned according to their oxygen desaturation index (ODI) and Epworth Sleepiness Scale (ESS) score into symptomatic OSA and controls. Vigilance-state-dependent breath metabolites assessed by high-resolution mass spectrometry were used to test for a difference in both groups. In total, 44 patients were eligible, of whom 18 (40.9%) were assigned to the symptomatic OSA group. Symptomatic OSA patients with a median [25%, 75% quartiles] ODI of 40.5 [35.0, 58.8] events/h and an ESS of 14.0 [11.2, 15.8] showed moderate to strong evidence for differences in 18 vigilance-state-dependent breath compounds compared to controls. These identified metabolites are part of major metabolic pathways in carbohydrate, amino acid, and lipid metabolism. Thus, beyond hypoxia per se, we hypothesize that disturbed sleep in OSA patients persists as disturbed sleep-dependent metabolite levels during daytime.


Asunto(s)
Trastornos de Somnolencia Excesiva , Apnea Obstructiva del Sueño , Humanos , Trastornos de Somnolencia Excesiva/complicaciones , Apnea Obstructiva del Sueño/complicaciones , Vigilia , Sueño , Oxígeno
14.
ERJ Open Res ; 8(2)2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35747228

RESUMEN

Maximal oxygen uptake (V'O2 max), assessed by cardiopulmonary exercise testing (CPET), is an important parameter for risk assessment in patients with pulmonary hypertension (PH). However, CPET may not be available for all PH patients. Thus, we aimed to test previously published predictive models of V'O2 max from the 6-min walk distance (6MWD) for their accuracy and to create a new model. We tested four models (two by Ross et al. (2010), one by Miyamoto et al. (2000) and one by Zapico et al. (2019)). To derive a new model, data were split into a training and testing dataset (70:30) and step-wise linear regression was performed. To compare the different models, the standard error of the estimate (SEE) was calculated and the models graphically compared by Bland-Altman plots. Sensitivity and specificity for correct prediction into low-risk classification (V'O2 max >15 mL/min/kg) was calculated for all models. A total of 276 observations were included in the analysis (194/82 training/testing dataset); 6MWD and V'O2 max were significantly correlated (r=0.65, p<0.001). Linear regression showed significant correlation of 6MWD, weight and heart rate response (HRR) with V'O2 max and the best fitting prediction equation was: V'O2 max = 1.83 + 0.031 × 6MWD (m) - 0.023 × weight (kg) - 0.015 × HRR (bpm). SEEs for the different models were 3.03, 3.22, 4.36 and 3.08 mL/min/kg for the Ross et al., Miyamoto et al., Zapico et al. models and the new model, respectively. Predicted mean V'O2 max was 16.5 mL/min/kg (versus observed 16.1 mL/min/kg). 6MWD and V'O2 max reveal good correlation in all models. However, the accuracy of all models is inadequate for clinical use. Thus, CPET and 6MWD both remain valuable risk assessment tools in the management of PH.

15.
J Clin Med ; 11(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35628896

RESUMEN

Prediction of adverse health effects at altitude or during air travel is relevant, particularly in pre-existing cardiopulmonary disease such as pulmonary arterial or chronic thromboembolic pulmonary hypertension (PAH/CTEPH, PH). A total of 21 stable PH-patients (64 ± 15 y, 10 female, 12/9 PAH/CTEPH) were examined by pulse oximetry, arterial blood gas analysis and echocardiography during exposure to normobaric hypoxia (NH) (FiO2 15% ≈ 2500 m simulated altitude, data partly published) at low altitude and, on a separate day, at hypobaric hypoxia (HH, 2500 m) within 20−30 min after arrival. We compared changes in blood oxygenation and estimated pulmonary artery pressure in lowlanders with PH during high altitude simulation testing (HAST, NH) with changes in response to HH. During NH, 4/21 desaturated to SpO2 < 85% corresponding to a positive HAST according to BTS-recommendations and 12 qualified for oxygen at altitude according to low SpO2 < 92% at baseline. At HH, 3/21 received oxygen due to safety criteria (SpO2 < 80% for >30 min), of which two were HAST-negative. During HH vs. NH, patients had a (mean ± SE) significantly lower PaCO2 4.4 ± 0.1 vs. 4.9 ± 0.1 kPa, mean difference (95% CI) −0.5 kPa (−0.7 to −0.3), PaO2 6.7 ± 0.2 vs. 8.1 ± 0.2 kPa, −1.3 kPa (−1.9 to −0.8) and higher tricuspid regurgitation pressure gradient 55 ± 4 vs. 45 ± 4 mmHg, 10 mmHg (3 to 17), all p < 0.05. No serious adverse events occurred. In patients with PH, short-term exposure to altitude of 2500 m induced more pronounced hypoxemia, hypocapnia and pulmonary hemodynamic changes compared to NH during HAST despite similar exposure times and PiO2. Therefore, the use of HAST to predict physiological changes at altitude remains questionable. (ClinicalTrials.gov: NCT03592927 and NCT03637153).

16.
J Am Heart Assoc ; 11(4): e023839, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35156392

RESUMEN

Background The aim of the present work was to study the influence of body position on resting and exercise pulmonary hemodynamics in patients assessed for pulmonary hypertension (PH). Methods and Results Data from 483 patients with suspected PH undergoing right heart catheterization for clinical indications (62% women, age 61±15 years, 246 precapillary PH, 48 postcapillary PH, 106 exercise PH, 83 no PH) were analyzed; 213 patients (main cohort, years 2016-2018) were examined at rest in upright (45°) and supine position, such as under upright exercise. Upright exercise hemodynamics were compared with 270 patients (historical cohort) undergoing supine exercise with the same protocol. Upright versus supine resting data revealed a lower mean pulmonary artery pressure 31±14 versus 32±13 mm Hg, pulmonary artery wedge pressure 11±4 versus 12±5 mm Hg, and cardiac index 2.9±0.7 versus 3.1±0.8 L/min per m2, and higher pulmonary vascular resistance 4.1±3.1 versus 3.9±2.8 Wood P<0.001. Exercise data upright versus supine revealed higher work rates (53±26 versus 33±22 watt), and adjusting for differences in work rate and baseline values, higher end-exercise mean pulmonary artery pressure (52±19 versus 45±16 mm Hg, P=0.001), similar pulmonary artery wedge pressure and cardiac index, higher pulmonary vascular resistance (5.4±3.7 versus 4.5±3.4 Wood units, P=0.002), and higher mean pulmonary artery pressure/cardiac output (7.9±4.7 versus 7.1±4.1 Wood units, P=0.001). Conclusions Body position significantly affects resting and exercise pulmonary hemodynamics with a higher pulmonary vascular resistance of about 10% in upright versus supine position at rest and end-exercise, and should be considered and reported when assessing PH.


Asunto(s)
Hipertensión Pulmonar , Anciano , Ejercicio Físico , Femenino , Hemodinámica , Humanos , Hipertensión Pulmonar/diagnóstico , Masculino , Persona de Mediana Edad , Presión Esfenoidal Pulmonar , Posición Supina
17.
Front Med (Lausanne) ; 9: 791423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223898

RESUMEN

BACKGROUND: Pure oxygen breathing (hyperoxia) may improve hemodynamics in patients with pulmonary hypertension (PH) and allows to calculate right-to-left shunt fraction (Qs/Qt), whereas breathing normobaric hypoxia may accelerate hypoxic pulmonary vasoconstriction (HPV). This study investigates how hyperoxia and hypoxia affect mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR) in patients with PH and whether Qs/Qt influences the changes of mPAP and PVR. STUDY DESIGN AND METHODS: Adults with pulmonary arterial or chronic thromboembolic PH (PAH/CTEPH) underwent repetitive hemodynamic and blood gas measurements during right heart catheterization (RHC) under normoxia [fractions of inspiratory oxygen (FiO2) 0.21], hypoxia (FiO2 0.15), and hyperoxia (FiO2 1.0) for at least 10 min. RESULTS: We included 149 patients (79/70 PAH/CTEPH, 59% women, mean ± SD 60 ± 17 years). Multivariable regressions (mean change, CI) showed that hypoxia did not affect mPAP and cardiac index, but increased PVR [0.4 (0.1-0.7) WU, p = 0.021] due to decreased pulmonary artery wedge pressure [-0.54 (-0.92 to -0.162), p = 0.005]. Hyperoxia significantly decreased mPAP [-4.4 (-5.5 to -3.3) mmHg, p < 0.001] and PVR [-0.4 (-0.7 to -0.1) WU, p = 0.006] compared with normoxia. The Qs/Qt (14 ± 6%) was >10 in 75% of subjects but changes of mPAP and PVR under hyperoxia and hypoxia were independent of Qs/Qt. CONCLUSION: Acute exposure to hypoxia did not relevantly alter pulmonary hemodynamics indicating a blunted HPV-response in PH. In contrast, hyperoxia remarkably reduced mPAP and PVR, indicating a preserved vasodilator response to oxygen and possibly supporting the oxygen therapy in patients with PH. A high proportion of patients with PH showed increased Qs/Qt, which, however, was not associated with changes in pulmonary hemodynamics in response to changes in FiO2.

18.
Int J Cardiol ; 348: 65-72, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34856290

RESUMEN

BACKGROUND: Patients with unrepaired cyanotic congenital heart disease (CHD) suffer from aggravated hypoxemia during exercise. We tested the hypothesis that supplemental oxygen improves exercise performance in these patients. METHODS: In this randomized, sham-controlled, single-blind, cross-over trial cyanotic CHD-patients underwent four cycle exercise tests to exhaustion, while breathing either oxygen-enriched (FiO2 0.50, oxygen) or ambient air (FiO2 0.21, air) using incremental (IET) or constant work-rate (CWRET) exercise test protocols (75% of maximal work rate achieved under FiO2 0.21). Pulmonary gas-exchange, electrocardiogram, arterial blood gases, oxygen saturation (SpO2), cerebral and quadriceps muscle tissue oxygenation (CTO and QMTO) by near-infrared spectroscopy were measured. RESULTS: We included seven patients with cyanotic CHD (4 Eisenmenger syndrome, 3 unrepaired cyanotic defects, 4 women) median (quartiles) age 36 (32;50) years, BMI 23 (20;26) kg/m2 and SpO2 at rest 87 (83;89) %. When comparing supplemental oxygen with air during exercise, maximal work-rate in IET increased from 76 (58;114) Watts to 83 (67;136) Watts, median difference 9 (0;22) W (p = 0.046) and CWRET-time increased from 412 s (325;490) to 468 s (415;553), median increase 56 (39;126) s (p = 0.018). In both IET and CWRET SpO2 was significantly higher and ventilatory equivalent for carbon dioxide significantly lower at end-exercise with oxygen compared to air, whereas CTO and QMTO did not significantly differ. CONCLUSIONS: Patients with cyanotic CHD significantly improved their exercise performance, in terms of maximal work-rate and endurance time along with an improved arterial oxygenation and ventilatory efficiency with supplemental oxygen compared to air.


Asunto(s)
Cardiopatías Congénitas , Hipoxia , Adulto , Prueba de Esfuerzo , Femenino , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/terapia , Humanos , Oxígeno , Saturación de Oxígeno , Método Simple Ciego
19.
Front Med (Lausanne) ; 8: 776956, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888330

RESUMEN

Background: Exact and simultaneous measurements of mean pulmonary artery pressure (mPAP) and cardiac output (CO) are crucial to calculate pulmonary vascular resistance (PVR), which is essential to define pulmonary hypertension (PH). Simultaneous measurements of mPAP and CO are not feasible using the direct Fick (DF) method, due to the necessity to sample blood from the catheter-tip. We evaluated a modified DF method, which allows simultaneous measurement of mPAP and CO without needing repetitive blood samples. Methods: Twenty-four patients with pulmonary arterial or chronic thromboembolic PH had repetitive measurements of CO at rest and end-exercise during three phases of a crossover trial. CO was assessed by the original DF method using oxygen uptake, measured by a metabolic unit, and arterial and mixed venous oxygen saturations from co-oximetry of respective blood gases served as reference. These CO measurements were then compared with a modified DF method using pulse oximetry at the catheter- and fingertip. Results: The bias among CO measurements by the two DF methods at rest was -0.26 L/min with limits of agreement of ±1.66 L/min. The percentage error was 28.6%. At the end-exercise, the bias between methods was 0.29 L/min with limits of agreement of ±1.54 L/min and percentage error of 16.1%. Conclusion: Direct Fick using a catheter- and fingertip pulse oximetry (DFp) is a practicable and reliable method for assessing CO in patients with PH. This method has the advantage of allowing simultaneous measurement of PAP and CO, and frequent repetitive measurements are needed during exercise. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT02755259, identifier: NCT02755259.

20.
ERJ Open Res ; 7(4)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34651040

RESUMEN

QUESTION ADDRESSED BY THE STUDY: To investigate exercise performance and hypoxia-related health effects in patients with pulmonary hypertension (PH) during a high-altitude sojourn. PATIENTS AND METHODS: In a randomised crossover trial in stable (same therapy for >4 weeks) patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) with resting arterial oxygen tension (P aO2 ) ≥7.3 kPa, we compared symptom-limited constant work-rate exercise test (CWRET) cycling time during a day-trip to 2500 m versus 470 m. Further outcomes were symptoms, oxygenation and echocardiography. For safety, patients with sustained hypoxaemia at altitude (peripheral oxygen saturation <80% for >30 min or <75% for >15 min) received oxygen therapy. RESULTS: 28 PAH/CTEPH patients (n=15/n=13); 13 females; mean±sd age 63±15 years were included. After >3 h at 2500 m versus 470 m, CWRET-time was reduced to 17±11 versus 24±9 min (mean difference -6, 95% CI -10 to -3), corresponding to -27.6% (-41.1 to -14.1; p<0.001), but similar Borg dyspnoea scale. At altitude, P aO2 was significantly lower (7.3±0.8 versus 10.4±1.5 kPa; mean difference -3.2 kPa, 95% CI -3.6 to -2.8 kPa), whereas heart rate and tricuspid regurgitation pressure gradient (TRPG) were higher (86±18 versus 71±16 beats·min-1, mean difference 15 beats·min-1, 95% CI 7 to 23 beats·min-1) and 56±25 versus 40±15 mmHg (mean difference 17 mmHg, 95% CI 9 to 24 mmHg), respectively, and remained so until end-exercise (all p<0.001). The TRPG/cardiac output slope during exercise was similar at both altitudes. Overall, three (11%) out of 28 patients received oxygen at 2500 m due to hypoxaemia. CONCLUSION: This randomised crossover study showed that the majority of PH patients tolerate a day-trip to 2500 m well. At high versus low altitude, the mean exercise time was reduced, albeit with a high interindividual variability, and pulmonary artery pressure at rest and during exercise increased, but pressure-flow slope and dyspnoea were unchanged.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...