Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Small ; : e2401844, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751204

RESUMEN

The expansion of T cells ex vivo is crucial for effective immunotherapy but currently limited by a lack of expansion approaches that closely mimic in vivo T cell activation. Taking inspiration from bottom-up synthetic biology, a new synthetic cell technology is introduced based on dispersed liquid-liquid phase-separated droplet-supported lipid bilayers (dsLBs) with tunable biochemical and biophysical characteristics, as artificial antigen presenting cells (aAPCs) for ex vivo T cell expansion. These findings obtained with the dsLB technology reveal three key insights: first, introducing laterally mobile stimulatory ligands on soft aAPCs promotes expansion of IL-4/IL-10 secreting regulatory CD8+ T cells, with a PD-1 negative phenotype, less prone to immune suppression. Second, it is demonstrated that lateral ligand mobility can mask differential T cell activation observed on substrates of varying stiffness. Third, dsLBs are applied to reveal a mechanosensitive component in bispecific Her2/CD3 T cell engager-mediated T cell activation. Based on these three insights, lateral ligand mobility, alongside receptor- and mechanosignaling, is proposed to be considered as a third crucial dimension for the design of ex vivo T cell expansion technologies.

2.
Haematologica ; 108(12): 3347-3358, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37139600

RESUMEN

Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a Hodgkin lymphoma expressing functional B-cell receptors (BCR). Recently, we described a dual stimulation model of IgD+ lymphocyte-predominant cells by Moraxella catarrhalis antigen RpoC and its superantigen MID/hag, associated with extralong CDR3 and HLA-DRB1*04 or HLADRB1* 07 haplotype. The aim of the present study was to extend the antigen screening to further bacteria and viruses. The fragment antibody-binding (Fab) regions of seven new and 15 previously reported cases were analyzed. The reactivity of non-Moraxella spp.-reactive Fab regions against lysates of Rothia mucilaginosa was observed in 5/22 (22.7%) cases. Galactofuranosyl transferase (Gltf) and 2,3-butanediol dehydrogenase (Bdh) of R. mucilaginosa were identified by comparative silver- and immuno-staining in two-dimensional gels, with subsequent mass spectrometry and validation by western blots and enzyme-linked immunosorbent assay. Both R. mucilaginosa Gltf and Bdh induced BCR pathway activation and proliferation in vitro. Apoptosis was induced by recombinant Gltf/ETA'-immunotoxin conjugates in DEV cells expressing recombinant R. mucilaginosa-reactive BCR. Reactivity against M. catarrhalis RpoC was confirmed in 3/7 newly expressed BCR (total 10/22 reactive to Moraxella spp.), resulting in 15/22 (68.2%) cases with BCR reactivity against defined bacterial antigens. These findings strengthen the hypothesis of bacterial trigger contributing to subsets of NLPHL.


Asunto(s)
Enfermedad de Hodgkin , Micrococcaceae , Humanos , Enfermedad de Hodgkin/patología , Receptores de Antígenos de Linfocitos B , Linfocitos/patología
3.
Mol Immunol ; 157: 202-213, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37075611

RESUMEN

Cytotoxic CD8+ T lymphocytes (CTL) eliminate infected cells or transformed tumor cells by releasing perforin-containing cytotoxic granules at the immunological synapse. The secretion of such granules depends on Ca2+-influx through store operated Ca2+ channels, formed by STIM (stromal interaction molecule)-activated Orai proteins. Whereas molecular mechanisms of the secretion machinery are well understood, much less is known about the molecular machinery that regulates the efficiency of Ca2+-dependent target cell killing. CTL killing efficiency is of high interest considering the number of studies on CD8+ T lymphocytes modified for clinical use. Here, we isolated total RNA from primary human cells: natural killer (NK) cells, non-stimulated CD8+ T-cells, and from Staphylococcus aureus enterotoxin A (SEA) stimulated CD8+ T-cells (SEA-CTL) and conducted whole genome expression profiling by microarray experiments. Based on differential expression analysis of the transcriptome data and analysis of master regulator genes, we identified 31 candidates which potentially regulate Ca2+-homeostasis in CTL. To investigate a putative function of these candidates in CTL cytotoxicity, we transfected either SEA-stimulated CTL (SEA-CTL) or antigen specific CD8+ T-cell clones (CTL-MART-1) with siRNAs specific against the identified candidates and analyzed the killing capacity using a real-time killing assay. In addition, we complemented the analysis by studying the effect of inhibitory substances acting on the candidate proteins if available. Finally, to unmask their involvement in Ca2+ dependent cytotoxicity, candidates were also analyzed under Ca2+-limiting conditions. Overall, we identified four hits, CCR5 (C-C chemokine receptor type five), KCNN4 (potassium calcium-activated channel subfamily N), RCAN3 (regulator of calcineurin) and BCL (B-cell lymphoma) 2 which clearly affect the efficiency of Ca2+ dependent cytotoxicity in CTL-MART-1 cells, CCR5, BCL2, and KCNN4 in a positive manner, and RCAN3 in a negative way.


Asunto(s)
Antineoplásicos , Linfocitos T CD8-positivos , Humanos , Calcio , Citotoxicidad Inmunológica , Linfocitos T Citotóxicos , Células Asesinas Naturales
4.
J Physiol ; 600(23): 5027-5054, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36226443

RESUMEN

Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells recognize and eliminate cancer cells. However, immune evasion, downregulation of immune function by the tumour microenvironment and resistance of cancer cells are major problems. Although CTL and NK cells are both important to eliminate cancer, most studies address them individually. We quantified sequential primary human CTL and NK cell cytotoxicity against the melanoma cell line SK-Mel-5. At high effector-to-target ratios, NK cells or melan-A (MART-1)-specific CTL eliminated all SK-Mel-5 cells within 24 h, indicating that SK-Mel-5 cells are not resistant initially. However, at lower effector-to-target ratios, which resemble numbers of the immune contexture in human cancer, a substantial number of SK-Mel-5 cells survived. Pre-exposure to CTL induced resistance in surviving SK-Mel-5 cells to subsequent CTL or NK cell cytotoxicity, and pre-exposure to NK cells induced resistance in surviving SK-Mel-5 cells to NK cells. Higher human leucocyte antigen class I expression or interleukin-6 levels were correlated with resistance to NK cells, whereas reduction in MART-1 antigen expression was correlated with reduced CTL cytotoxicity. The CTL cytotoxicity was rescued beyond control levels by exogenous MART-1 antigen. In contrast to the other three combinations, CTL cytotoxicity against SK-Mel-5 cells was enhanced following NK cell pre-exposure. Our assay allows quantification of sequential CTL and NK cell cytotoxicity and might guide strategies for efficient CTL-NK cell anti-melanoma therapies. KEY POINTS: Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells eliminate cancer cells. Both CTL and NK cells attack the same targets, but most studies address them individually. In a sequential cytotoxicity model, the interdependence of antigen-specific CTL and NK cell cytotoxicity against melanoma is quantified. High numbers of antigen-specific CTL and NK cells eliminate all melanoma cells. However, lower numbers induce resistance if secondary CTL or NK cell exposure follows initial CTL exposure or if secondary NK cell exposure follows initial NK cell exposure. On the contrary, if secondary CTL exposure follows initial NK cell exposure, cytotoxicity is enhanced. Alterations in human leucocyte antigen class I expression and interleukin-6 levels are correlated with resistance to NK cells, whereas a reduction in antigen expression is correlated with reduced CTL cytotoxicity; CTL cytotoxicity is rescued beyond control levels by exogenous antigen. This assay and the results on interdependencies will help us to understand and optimize immune therapies against cancer.


Asunto(s)
Melanoma , Linfocitos T Citotóxicos , Humanos , Antígeno MART-1 , Interleucina-6 , Células Asesinas Naturales , Microambiente Tumoral
5.
EJHaem ; 3(3): 739-747, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36051037

RESUMEN

Burkitt lymphoma (BL) represents the most aggressive B-cell-lymphoma. Beside the hallmark of IG-MYC-translocation, surface B-cell receptor (BCR) is expressed, and mutations in the BCR pathway are frequent. Coincidental infections in endemic BL, and specific extra-nodal sites suggest antigenic triggers. To explore this hypothesis, BCRs of BL cell lines and cases were screened for reactivities against a panel of bacterial lysates, lysates of Plasmodium falciparum, a custom-made virome array and against self-antigens, including post-translationally modified antigens. An atypically modified, SUMOylated isoform of Bystin, that is, SUMO1-BYSL was identified as the antigen of the BCR of cell line CA46. SUMO1-BYSL was exclusively expressed in CA46 cells with K139 as site of the SUMOylation. Secondly, an atypically acetylated isoform of HSP40 was identified as the antigen of the BCR of cell line BL41. K104 and K179 were the sites of immunogenic acetylation, and the acetylated HSP40 isoform was solely present in BL41 cells. Functionally, addition of SUMO1-BYSL and acetylated HSP40 induced BCR pathway activation in CA46 and BL41 cells, respectively. Accordingly, SUMO1-BYSL-ETA' immunotoxin, produced by a two-step intein-based conjugation, led to the specific killing of CA46 cells. Autoantibodies directed against SUMO1-BYSL were found in 3 of 14 (21.4%), and autoantibodies against acetylated HSP40 in 1/14(7.1%) patients with sporadic Burkitt-lymphoma. No reactivities against antigens of the infectious agent spectrum could be observed. These results indicate a pathogenic role of autoreactivity evoked by immunogenic post-translational modifications in a subgroup of sporadic BL including two EBV-negative BL cell lines.

6.
Front Immunol ; 13: 838484, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493468

RESUMEN

Immunological memory is important to protect humans against recurring diseases. Memory CD8+ T cells are required for quick expansion into effector cells but also provide immediate cytotoxicity against their targets. Whereas many functions of the two main cytotoxic subtypes, effector memory CD8+ T cells (TEM) and central memory CD8+ T cells (TCM), are well defined, single TEM and TCM cell cytotoxicity has not been quantified. To quantify cytotoxic efficiency of TEM and TCM, we developed a FRET-based single cell fluorescent assay with NALM6 target cells which allows analysis of target cell apoptosis, secondary necrosis following apoptosis, and primary necrosis after TEM- or TCM-target cell contact. Both, single cell and population cytotoxicity assays reveal a higher cytotoxic efficiency of TEM compared to TCM, as quantified by target cell apoptosis and secondary necrosis. Perforin, granzyme B, FasL, but not TRAIL expression are higher in TEM compared to TCM. Higher perforin levels (likely in combination with higher granzyme levels) mediate higher cytotoxic efficiency of TEM compared to TCM. Both, TEM and TCM need the same time to find their targets, however contact time between CTL and target, time to induce apoptosis, and time to induce secondary necrosis are all shorter for TEM. In addition, immune synapse formation in TEM appears to be slightly more efficient than in TCM. Defining and quantifying single TEM and TCM cytotoxicity and the respective mechanisms is important to optimize future subset-based immune therapies.


Asunto(s)
Antineoplásicos , Linfocitos T CD8-positivos , Humanos , Memoria Inmunológica , Necrosis/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Perforina/metabolismo
7.
Front Immunol ; 13: 831680, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265081

RESUMEN

TNF-related apoptosis inducing ligand (TRAIL) is expressed on cytotoxic T lymphocytes (CTLs) and TRAIL is linked to progression of diabetes. However, the impact of high glucose on TRAIL expression and its related killing function in CTLs still remains largely elusive. Here, we report that TRAIL is substantially up-regulated in CTLs in environments with high glucose (HG) both in vitro and in vivo. Non-mitochondrial reactive oxygen species, NFκB and PI3K/Akt are essential in HG-induced TRAIL upregulation in CTLs. TRAILhigh CTLs induce apoptosis of pancreatic beta cell line 1.4E7. Treatment with metformin and vitamin D reduces HG-enhanced expression of TRAIL in CTLs and coherently protects 1.4E7 cells from TRAIL-mediated apoptosis. Our work suggests that HG-induced TRAILhigh CTLs might contribute to the destruction of pancreatic beta cells in a hyperglycemia condition.


Asunto(s)
Linfocitos T Citotóxicos , Ligando Inductor de Apoptosis Relacionado con TNF , Glucosa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Linfocitos T Citotóxicos/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
8.
Front Immunol ; 12: 729820, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484240

RESUMEN

Efficacy of cytotoxic T lymphocyte (CTL)-based immunotherapy is still unsatisfactory against solid tumors, which are frequently characterized by condensed extracellular matrix. Here, using a unique 3D killing assay, we identify that the killing efficiency of primary human CTLs is substantially impaired in dense collagen matrices. Although the expression of cytotoxic proteins in CTLs remained intact in dense collagen, CTL motility was largely compromised. Using light-sheet microscopy, we found that persistence and velocity of CTL migration was influenced by the stiffness and porosity of the 3D matrix. Notably, 3D CTL velocity was strongly correlated with their nuclear deformability, which was enhanced by disruption of the microtubule network especially in dense matrices. Concomitantly, CTL migration, search efficiency, and killing efficiency in dense collagen were significantly increased in microtubule-perturbed CTLs. In addition, the chemotherapeutically used microtubule inhibitor vinblastine drastically enhanced CTL killing efficiency in dense collagen. Together, our findings suggest targeting the microtubule network as a promising strategy to enhance efficacy of CTL-based immunotherapy against solid tumors, especially stiff solid tumors.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Colágeno Tipo I/química , Citotoxicidad Inmunológica , Inmunoterapia Adoptiva , Microtúbulos/efectos de los fármacos , Neoplasias/terapia , Linfocitos T Citotóxicos/trasplante , Moduladores de Tubulina/farmacología , Vinblastina/farmacología , Línea Celular Tumoral , Técnicas de Cocultivo , Elasticidad , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Humanos , Hidrogeles , Microtúbulos/inmunología , Microtúbulos/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Porosidad , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo
9.
Front Immunol ; 12: 689337, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248978

RESUMEN

Cytotoxic T lymphocytes (CTLs) are key players to eliminate tumorigenic or pathogen-infected cells using lytic granules (LG) and Fas ligand (FasL) pathways. Depletion of glucose leads to severely impaired cytotoxic function of CTLs. However, the impact of excessive glucose on CTL functions still remains largely unknown. Here we used primary human CD8+ T cells, which were stimulated by CD3/CD28 beads and cultured in medium either containing high glucose (HG, 25 mM) or normal glucose (NG, 5.6 mM). We found that in HG-CTLs, glucose uptake and glycolysis were enhanced, whereas proliferation remained unaltered. Furthermore, CTLs cultured in HG exhibited an enhanced CTL killing efficiency compared to their counterparts in NG. Unexpectedly, expression of cytotoxic proteins (perforin, granzyme A, granzyme B and FasL), LG release, cytokine/cytotoxic protein release and CTL migration remained unchanged in HG-cultured CTLs. Interestingly, additional extracellular Ca2+ diminished HG-enhanced CTL killing function. Our findings suggest that in an environment with excessive glucose, CTLs could eliminate target cells more efficiently, at least for a certain period of time, in a Ca2+-dependent manner.


Asunto(s)
Glucosa/farmacología , Linfocitos T Citotóxicos/efectos de los fármacos , Animales , Células Cultivadas , Glucólisis/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , Linfocitos T Citotóxicos/metabolismo
10.
J Immunol ; 205(11): 2988-3000, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33106338

RESUMEN

Delivery of vesicles to their desired destinations plays a central role in maintaining proper cell functionality. In certain scenarios, depending on loaded cargos, the vesicles have spatially distinct destinations. For example, in T cells, some cytokines (e.g., IL-2) are polarized to the T cell-target cell interface, whereas the other cytokines are delivered multidirectionally (e.g., TNF-α). In this study, we show that in primary human CD4+ T cells, both TNF-α+ and IL-2+ vesicles can tether with endocytic organelles (lysosomes/late endosomes) by forming membrane contact sites. Tethered cytokine-containing vesicle (CytV)-endocytic organelle pairs are released sequentially. Only endocytic organelle-tethered CytVs are preferentially transported to their desired destination. Mathematical models suggest that endocytic organelle tethering could regulate the direction of cytokine transport by selectively attaching different microtubule motor proteins (such as kinesin and dynein) to the corresponding CytVs. These findings establish the previously unknown interorganelle tethering to endocytic organelles as a universal solution for directional cytokine transport in CD4+ T cells. Modulating tethering to endocytic organelles can, therefore, coordinately control directionally distinct cytokine transport.


Asunto(s)
Transporte Biológico/fisiología , Linfocitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Endocitosis/fisiología , Orgánulos/metabolismo , Línea Celular , Dineínas/metabolismo , Endosomas/metabolismo , Células HEK293 , Humanos , Cinesinas/metabolismo , Lisosomas/metabolismo , Microtúbulos/metabolismo
11.
Eur J Immunol ; 50(12): 2095-2098, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32697355

RESUMEN

In CTLs: High glucose-culture enhances thapsigargin-induced SOCE but decreases target recognition-induced Ca2+ influx. High glucose-culture regulates expression of ORAIs and STIMs without affecting glucose uptake. More high glucose-cultured CTLs are prone to necrosis after execution of killing.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Glucosa/metabolismo , Linfocitos T Citotóxicos/metabolismo , Tapsigargina/farmacología , Humanos , Transducción de Señal/efectos de los fármacos , Linfocitos T Citotóxicos/efectos de los fármacos
12.
Cell Death Dis ; 10(2): 46, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30718475

RESUMEN

NF-κB functions as modulator of T cell receptor-mediated signaling and transcriptional regulator of miR-34a. Our in silico analysis revealed that miR-34a impacts the NF-κB signalosome with miR-34a binding sites in 14 key members of the NF-κB signaling pathway. Functional analysis identified five target genes of miR-34a including PLCG1, CD3E, PIK3CB, TAB2, and NFΚBIA. Overexpression of miR-34a in CD4+ and CD8+ T cells led to a significant decrease of NFΚBIA as the most downstream cytoplasmic NF-κB member, a reduced cell surface abundance of TCRA and CD3E, and to a reduction of T cell killing capacity. Inhibition of miR-34a caused an increase of NFΚBIA, TCRA, and CD3E. Notably, activation of CD4+ and CD8+ T cells entrails a gradual increase of miR-34a. Our results lend further support to a model with miR-34a as a central NF-κB regulator in T cells.


Asunto(s)
MicroARNs/inmunología , FN-kappa B/inmunología , Linfocitos T/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Complejo CD3/genética , Complejo CD3/inmunología , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/inmunología , Células HEK293 , Humanos , Células Jurkat , MicroARNs/genética , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/inmunología , FN-kappa B/genética , Fosfolipasa C gamma/genética , Fosfolipasa C gamma/inmunología , Transducción de Señal/inmunología , Transfección
13.
FEBS Lett ; 593(5): 487-498, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30758047

RESUMEN

Histone3-lysine9 (H3K9) residues not only control gene expression, but also contribute to RNA splicing. Here, the H3K9 histone demethylase PHF8 was investigated in endothelial cells for its involvement in alternative splicing. An angiogenic sprouting assay shows the importance of PHF8 for endothelial cells. Immunoprecipitation reveals that PHF8 interacts with U1 spliceosomal proteins, such as SRPK1 and snRNP70. We identify the histocompatibility antigen HLA-G as a target of PHF8. The inclusion of HLA-G intron 4, with concomitant RNA Polymerase II accumulation at this intron is controlled by PHF8 and H3K9. Soluble HLA-G is generated after PHF8 knockdown, which leads to reduced T-cell proliferation. Collectively, PHF8 knockdown generates the immunosuppressive alternative splice product soluble HLA-G, which is secreted by endothelial cells to elicit a potential inhibitory effect on inflammation.


Asunto(s)
Empalme Alternativo , Antígenos HLA-G/genética , Histona Demetilasas/metabolismo , Factores de Transcripción/metabolismo , Proliferación Celular , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Técnicas de Silenciamiento del Gen , Histona Demetilasas/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Intrones , Unión Proteica , ARN Polimerasa II/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Linfocitos T/citología , Factores de Transcripción/genética
14.
Thromb Haemost ; 119(2): 234-245, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30650445

RESUMEN

Macrophages make important contributions to inflammation and wound healing. We show here that macrophage polarization is deregulated in haemophilia in response to macrophage colony-stimulating factor (M-CSF) and partially in response to granulocyte-macrophage colony-stimulating factor (GM-CSF). As a result, haemophilia macrophages exhibit a specific impairment of M-CSF-mediated functions involved in wound healing such as clot invasion and phagocytosis. Haemophilia monocytes express reduced amounts of the receptors for M-CSF and GM-CSF, which correlates with a failure to express tumour necrosis factor α (TNFα) and CD163 in M-CSF-treated haemophilia macrophages and reduced expression of TNFα and CD206 after treatment with GM-CSF. Protein expression in response to M-CSF was regained with respect to CD163 and CD206 after embedding haemophilia monocytes in clotted plasma suggesting that a functioning coagulation system has positive effects on macrophage M2 polarization. Mimicking the functional deficits of haemophilia macrophages in normal macrophages was possible by adding leptin, which we found to be elevated in the blood of haemophilia patients, to a monocyte cell line. The increase of leptin occurred in conjunction with C-reactive protein in a body mass index-controlled cohort suggesting that haemophilia patients harbour chronic low-grade inflammation. Together, our data indicate that impaired clotting in haemophilia patients leads to increased inflammation and a deregulation in macrophage differentiation, which may explain the commonly observed deficits in wound healing and tissue regeneration.


Asunto(s)
Coagulación Sanguínea , Hemofilia A/sangre , Macrófagos/citología , Adulto , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Circulación Sanguínea , Diferenciación Celular , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática , Eritrocitos/citología , Fibrina/metabolismo , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Hemofilia A/tratamiento farmacológico , Humanos , Lectinas Tipo C/metabolismo , Leucocitos Mononucleares/citología , Factor Estimulante de Colonias de Macrófagos/uso terapéutico , Masculino , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Microscopía Fluorescente , Monocitos/citología , Fagocitosis , Receptores de Superficie Celular/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adulto Joven
15.
Transfusion ; 58(6): 1516-1526, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29732580

RESUMEN

BACKGROUND: Research with primary human white blood cell (WBC) subpopulations requires high quantity, quality, and functionality of peripheral blood mononuclear cells (PBMCs) as a source to further characterize cellular subpopulations such as T and B lymphocytes, monocytes, or natural killer cells. Apart from buffy coats derived from whole blood, residual blood from preparative hemapheresis kits are used as a source for PBMCs, but knowledge on the yield and functionality of cells from different devices is limited. STUDY DESIGN AND METHODS: We evaluated quantity and quality of PBMCs isolated from apheresis kits of two apheresis devices (AMICUS, Fenwal; and Trima Accel, Terumo BCT), the latter being our standard source for many years. PBMCs derived from Trima or AMICUS were tested for yield and subtype composition by flow cytometry. Functionality was assessed by cytokine induction of CD4+ and CD8+ T cells and by degranulation. Moreover, cytotoxic activity of natural killer cells was quantified by a real-time killing assay. RESULTS: Mean numbers of isolated cells were 5.5 ± 2.4 × 108 for AMICUS, and 10.3 ± 6.4 × 108 for Trima Accel, respectively. The proportion of WBC subtypes corresponded to well-known numbers from whole blood, with minor differences between the two apheresis systems. Likewise, minor differences in cytokine induction were found in stimulated CD4+ or CD8+ T cells. Finally, PBMCs derived from the two systems showed comparable cytotoxic activity. CONCLUSION: PBMC derived from residual blood of the AMICUS and Trima Accel apheresis devices serve as an economic and easily accessible source for functional PBMCs with comparable quantity and quality to PBMCs derived from whole blood.


Asunto(s)
Eliminación de Componentes Sanguíneos/instrumentación , Leucocitos Mononucleares/citología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Citocinas/farmacología , Citometría de Flujo , Humanos , Células Asesinas Naturales/fisiología , Recuento de Leucocitos
16.
J Physiol ; 596(14): 2681-2698, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29368348

RESUMEN

KEY POINTS: Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are required to eliminate cancer cells. We analysed the Ca2+ dependence of CTL and NK cell cytotoxicity and found that in particular CTLs have a very low optimum of [Ca2+ ]i (between 122 and 334 nm) and [Ca2+ ]o (between 23 and 625 µm) for efficient cancer cell elimination, well below blood plasma Ca2+ levels. As predicted from these results, partial down-regulation of the Ca2+ channel Orai1 in CTLs paradoxically increases perforin-dependent cancer cell killing. Lytic granule release at the immune synapse between CTLs and cancer cells has a Ca2+ optimum compatible with this low Ca2+ optimum for efficient cancer cell killing, whereas the Ca2+ optimum for CTL migration is slightly higher and proliferation increases monotonously with increasing [Ca2+ ]o . We propose that a partial inhibition of Ca2+ signals by specific Orai1 blockers at submaximal concentrations could contribute to tumour elimination. ABSTRACT: Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are required to protect the human body against cancer. Ca2+ is a key metabolic factor for lymphocyte function and cancer homeostasis. We analysed the Ca2+ dependence of CTL and NK cell cytotoxicity against cancer cells and found that CTLs have a bell-shaped Ca2+ dependence with an optimum for cancer cell elimination at rather low [Ca2+ ]o (23-625 µm) and [Ca2+ ]i (122-334 nm). This finding predicts that a partial inhibition of Orai1 should increase (rather than decrease) cytotoxicity of CTLs at [Ca2+ ]o higher than 625 µm. We tested this hypothesis in CTLs and indeed found that partial down-regulation of Orai1 by siRNA increases the efficiency of cancer cell killing. We found two mechanisms that may account for the Ca2+ optimum of cancer cell killing: (1) migration velocity and persistence have a moderate optimum between 500 and 1000 µm [Ca2+ ]o in CTLs, and (2) lytic granule release at the immune synapse between CTLs and cancer cells is increased at 146 µm compared to 3 or 800 µm, compatible with the Ca2+ optimum for cancer cell killing. It has been demonstrated in many cancer cell types that Orai1-dependent Ca2+ signals enhance proliferation. We propose that a decrease of [Ca2+ ]o or partial inhibition of Orai1 activity by selective blockers in the tumour microenvironment could efficiently reduce cancer growth by simultaneously increasing CTL and NK cell cytotoxicity and decreasing cancer cell proliferation.


Asunto(s)
Apoptosis , Calcio/metabolismo , Proliferación Celular , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Neoplasias/patología , Linfocitos T Citotóxicos/inmunología , Movimiento Celular , Gránulos Citoplasmáticos/metabolismo , Humanos , Neoplasias/metabolismo , Perforina/metabolismo , Células Tumorales Cultivadas
17.
Eur J Immunol ; 47(9): 1562-1572, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28688208

RESUMEN

The actin-binding protein profilin1 (PFN1) plays a central role in actin dynamics, which is essential for cytotoxic T lymphocyte (CTL) functions. The functional role of PFN1 in CTLs, however still remains elusive. Here, we identify PFN1 as the only member of the profilin family expressed in primary human CD8+ T cells. Using in vitro assays, we find that PFN1 is a negative regulator of CTL-mediated elimination of target cells. Furthermore, PFN1 is involved in activation-induced lytic granule (LG) release, CTL migration and modulation of actin structures at the immunological synapse (IS). During CTL migration, PFN1 modulates the velocity, protrusion formation patterns and protrusion sustainability. In contrast, PFN1 does not significantly affect migration persistence and the rates of protrusion emergence and retraction. Under in vitro conditions mimicking a tumor microenvironment, we show that PFN1 downregulation promotes CTL invasion into a 3D matrix, without affecting the viability of CTLs in a hydrogen peroxide-enriched microenvironment. Highlighting its potential relevance in cancer, we find that in pancreatic cancer patients, PFN1 expression is substantially decreased in peripheral CD8+ T cells. Taken together, we conclude that PFN1 is a negative regulator for CTL-mediated cytotoxicity and may have an impact on CTL functionality in a tumor-related context.


Asunto(s)
Movimiento Celular , Extensiones de la Superficie Celular/ultraestructura , Matriz Extracelular/metabolismo , Sinapsis Inmunológicas/ultraestructura , Neoplasias Pancreáticas/inmunología , Profilinas/metabolismo , Linfocitos T Citotóxicos/inmunología , Citoesqueleto de Actina/ultraestructura , Antígenos CD8/metabolismo , Células Cultivadas , Citotoxicidad Inmunológica , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Peróxido de Hidrógeno/metabolismo , Activación de Linfocitos , Neoplasias Pancreáticas/genética , Profilinas/inmunología , Linfocitos T Citotóxicos/ultraestructura , Microambiente Tumoral
18.
Sci Rep ; 7: 44357, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28287155

RESUMEN

Natural killer (NK) cells play a central role during innate immune responses by eliminating pathogen-infected or tumorigenic cells. In the microenvironment, NK cells encounter not only target cells but also other cell types including non-target bystander cells. The impact of bystander cells on NK killing efficiency is, however, still elusive. In this study we show that the presence of bystander cells, such as P815, monocytes or HUVEC, enhances NK killing efficiency. With bystander cells present, the velocity and persistence of NK cells were increased, whereas the degranulation of lytic granules remained unchanged. Bystander cell-derived H2O2 was found to mediate the acceleration of NK cell migration. Using mathematical diffusion models, we confirm that local acceleration of NK cells in the vicinity of bystander cells reduces their search time to locate target cells. In addition, we found that integrin ß chains (ß1, ß2 and ß7) on NK cells are required for bystander-enhanced NK migration persistence. In conclusion, we show that acceleration of NK cell migration in the vicinity of H2O2-producing bystander cells reduces target cell search time and enhances NK killing efficiency.


Asunto(s)
Citotoxicidad Inmunológica/inmunología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Asesinas Naturales/inmunología , Monocitos/inmunología , Animales , Efecto Espectador/inmunología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/inmunología , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Células K562 , Células Asesinas Naturales/citología , Ratones , Monocitos/citología , Monocitos/metabolismo , Oxidantes/metabolismo , Oxidantes/farmacología , Factores de Tiempo
19.
Int J Med Microbiol ; 307(2): 116-125, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28117265

RESUMEN

Staphyloccocus aureus is a major human pathogen and a common cause for superficial and deep seated wound infections. The pathogen is equipped with a large arsenal of virulence factors, which facilitate attachment to various eukaryotic cell structures and modulate the host immune response. One of these factors is the extracellular adherence protein Eap, a member of the "secretable expanded repertoire adhesive molecules" (SERAM) protein family that possesses adhesive and immune modulatory properties. The secreted protein was previously shown to impair wound healing by interfering with host defense and neovascularization. However, its impact on keratinocyte proliferation and migration, two major steps in the re-epithelialization process of wounds, is not known. Here, we report that Eap affects the proliferation and migration capacities of keratinocytes by altering their morphology and adhesive properties. In particular, treatment of non-confluent HaCaT cell cultures with Eap resulted in cell morphology changes as well as a significant reduction in cell proliferation and migration. Eap-treated HaCaT cells changed their appearance from an oblong via a trapezoid to an astral-like shape, accompanied by decreases in cell volume and cell stiffness, and exhibited significantly increased cell adhesion. Eap had a similar influence on endothelial and cancer cells, indicative for a general effect of Eap on eukaryotic cell morphology and functions. Specifically, Eap was found to interfere with growth factor-stimulated activation of the mitogen-activated protein kinase (MAPK) pathway that is known to be responsible for cell shape modulation, induction of proliferation and migration of epithelial cells. Western blot analyses revealed that Eap blocked the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2) in keratinocyte growth factor (KGF)-stimulated HaCaT cells. Together, these data add another antagonistic mechanism of Eap in wound healing, whereby the bacterial protein interferes with keratinocyte migration and proliferation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Queratinocitos/fisiología , Proteínas de Unión al ARN/metabolismo , Staphylococcus aureus/patogenicidad , Adhesión Celular/efectos de los fármacos , Línea Celular , Células Endoteliales/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Humanos , Queratinocitos/citología , Transducción de Señal/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
20.
Cytotherapy ; 18(9): 1146-61, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27424145

RESUMEN

BACKGROUND AIMS: CD8(+) T cells are part of the adaptive immune system and, as such, are responsible for the elimination of tumor cells. Dendritic cells (DC) are professional antigen-presenting cells (APC) that activate CD8(+) T cells. Effector CD8(+) T cells in turn mediate the active immunotherapeutic response of DC vaccination against the aggressive glioblastoma (GBM). The lack of tumor response assays complicates the assessment of treatment success in GBM patients. METHODS: A novel assay to identify specific cytotoxicity of activated T cells by APC was evaluated. Tumor antigen-pulsed DCs from HLA-A*02-positive GBM patients were cultivated to stimulate autologous cytotoxic T lymphocytes (CTL) over a 12-day culture period. To directly correlate antigen specificity and cytotoxic capacity, intracellular interferon (IFN)-γ fluorescence flow cytometry-based measurements were combined with anti-GBM tumor peptide dextramer staining. IFN-γ response was quantified by real-time polymerase chain reaction (PCR), and selected GBM genes were compared with healthy human brain cDNA by single specific primer PCR characterization. RESULTS: Using CTL of GBM patients stimulated with GBM lysate-pulsed DCs increased IFN-γ messenger RNA levels, and intracellular IFN-γ protein expression was positively correlated with specificity against GBM antigens. Moreover, the GBM peptide-specific CD8(+) T-cell response correlated with specific GBM gene expression. Following DC vaccination, GBM patients showed 10-fold higher tumor-specific signals compared with unvaccinated GBM patients. DISCUSSION: These data indicate that GBM tumor peptide-dextramer staining of CTL in combination with intracellular IFN-γ staining may be a useful tool to acquire information on whether a specific tumor antigen has the potential to induce an immune response in vivo.


Asunto(s)
Neoplasias Encefálicas/inmunología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Dendríticas/inmunología , Glioblastoma/inmunología , Monitorización Inmunológica/métodos , Antígenos de Neoplasias/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Linfocitos T CD8-positivos/inmunología , Femenino , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Interferón gamma/metabolismo , Activación de Linfocitos , Reacción en Cadena en Tiempo Real de la Polimerasa , Linfocitos T Citotóxicos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...