Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38328095

RESUMEN

It is widely believed that tissue mechanical properties, determined mainly by the extracellular matrix (ECM), are actively maintained. However, despite its broad importance to biology and medicine, tissue mechanical homeostasis is poorly understood. To explore this hypothesis, we developed mutations in the mechanosensitive protein talin1 that alter cellular sensing of ECM stiffness. Mutation of a novel mechanosensitive site between talin1 rod domain helix bundles 1 and 2 (R1 and R2) shifted cellular stiffness sensing curves, enabling cells to spread and exert tension on compliant substrates. Opening of the R1-R2 interface promotes binding of the ARP2/3 complex subunit ARPC5L, which mediates the altered stiffness sensing. Ascending aortas from mice bearing these mutations show increased compliance, less fibrillar collagen, and rupture at lower pressure. Together, these results demonstrate that cellular stiffness sensing regulates ECM mechanical properties. These data thus directly support the mechanical homeostasis hypothesis and identify a novel mechanosensitive interaction within talin that contributes to this mechanism.

2.
ACS Nano ; 18(5): 4495-4506, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38265359

RESUMEN

Recent advances in scanning probe microscopy methodology have enabled the measurement of tip-sample interactions with picometer accuracy in all three spatial dimensions, thereby providing a detailed site-specific and distance-dependent picture of the related properties. This paper explores the degree of detail and accuracy that can be achieved in locally quantifying probe-molecule interaction forces and energies for adsorbed molecules. Toward this end, cobalt phthalocyanine (CoPc), a promising CO2 reduction catalyst, was studied on Ag(111) as a model system using low-temperature, ultrahigh vacuum noncontact atomic force microscopy. Data were recorded as a function of distance from the surface, from which detailed three-dimensional maps of the molecule's interaction with the tip for normal and lateral forces as well as the tip-molecule interaction potential were constructed. The data were collected with a CO molecule at the tip apex, which enabled a detailed visualization of the atomic structure. Determination of the tip-substrate interaction as a function of distance allowed isolation of the molecule-tip interactions; when analyzing these in terms of a Lennard-Jones-type potential, the atomically resolved equilibrium interaction energies between the CO tethered to the tip and the CoPc molecule could be recovered. Interaction energies peaked at less than 160 meV, indicating a physisorption interaction. As expected, the interaction was weakest at the aromatic hydrogens around the periphery of the molecule and strongest surrounding the metal center. The interaction, however, did not peak directly above the Co atom but rather in pockets surrounding it.

3.
Nat Mater ; 21(2): 140-142, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34621060
4.
Nano Lett ; 21(23): 10054-10061, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34809433

RESUMEN

For nanostructures in advanced electronic and plasmonic systems, a single-crystal structure with controlled orientation is essential. However, the fabrication of such devices has remained challenging, as current nanofabrication methods often suffer from either polycrystalline growth or the difficulty of integrating single crystals with substrates in desired orientations and locations to create functional devices. Here we report a thermomechanical method for the controlled growth of single-crystal nanowire arrays, which enables the simultaneous synthesis, alignment, and patterning of nanowires. Within such diffusion-based thermomechanical nanomolding (TMNM), the substrate material diffuses into nanosized cavities under an applied pressure gradient at a molding temperature of ∼0.4 times the material's melting temperature. Vertically grown face-centered cubic (fcc) nanowires with the [110] direction in an epitaxial relationship with the (110) substrate are demonstrated. The ability to control the crystal structure through the substrate takes TMNM a major step further, potentially allowing all fcc and body-centered cubic (bcc) materials to be integrated as single crystals into devices.


Asunto(s)
Nanoestructuras , Nanocables , Nanoestructuras/química , Nanotecnología/métodos , Nanocables/química , Temperatura
5.
Soft Matter ; 17(38): 8612-8623, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34545381

RESUMEN

We investigate the non-affine displacement fields that occur in two-dimensional Lennard-Jones models of metallic glasses subjected to athermal, quasistatic simple shear (AQS). During AQS, the shear stress versus strain displays continuous quasi-elastic segments punctuated by rapid drops in shear stress, which correspond to atomic rearrangement events. We capture all information concerning the atomic motion during the quasi-elastic segments and shear stress drops by performing Delaunay triangularizations and tracking the deformation gradient tensor Fα associated with each triangle α. To understand the spatio-temporal evolution of the displacement fields during shear stress drops, we calculate Fα along minimal energy paths from the mechanically stable configuration immediately before to that after the stress drop. We find that quadrupolar displacement fields form and dissipate both during the quasi-elastic segments and shear stress drops. We then perform local perturbations (rotation, dilation, simple and pure shear) to single triangles and measure the resulting displacement fields. We find that local pure shear deformations of single triangles give rise to mostly quadrupolar displacement fields, and thus pure shear strain is the primary type of local strain that is activated by bulk, athermal quasistatic simple shear. Other local perturbations, e.g. rotations, dilations, and simple shear of single triangles, give rise to vortex-like and dipolar displacement fields that are not frequently activated by bulk AQS. These results provide fundamental insights into the non-affine atomic motion that occurs in driven, glassy materials.

6.
ACS Appl Mater Interfaces ; 12(47): 52908-52914, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33191728

RESUMEN

With its ease of implementation, low cost, high throughput, and excellent feature replication accuracy, nanoimprinting is used to fabricate structures for electrical, optical, and biological applications or to modify surface properties. If ultraprecise and/or subnanometer-sized patterns are desired, nanoimprinting has shown only limited success with polymers, silica glasses, or crystalline materials. In contrast, the absence of an intrinsic length scale that would interfere with imprinting resolution enables bulk metallic glasses (BMGs) to replicate structures down to the atomic scale through thermoplastic forming (TPF). However, only a small number of BMG-forming alloys can be used for TPF-based atomic-scale imprinting. Here, we demonstrate an alternative sputter deposition-based approach for the replication of atomic-scale features that is suited for a very broad range of amorphous alloys, thereby dramatically extending the available chemistries. Additional advantages are the method's scalability, its ability to replicate a wide range of molds, its low material consumption, and the fact that the films can readily be applied onto almost any workpiece, which together open up new avenues to atomically defined surface structuring and functionalization. Our method constitutes the advancement from proof of concept to a practical and highly versatile toolbox of atomic-scale imprinting to be explored for the science and technology of atomic-scale imprinting.

7.
Nanoscale ; 11(44): 21340-21353, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31670730

RESUMEN

Two-dimensional (2D) materials can have multiple phases close in energy but with distinct properties, with the phases that form during growth dependent on experimental conditions and the growth substrate. Here, the competition between 2D van der Waals (VDW) silica and 2D Ni silicate phases on NixPd1-x(111) alloy substrates was systematically investigated experimentally as a function of Si surface coverage, annealing time and temperature, O2 partial pressure, and substrate composition and the results were compared with thermodynamic predictions based on density functional theory (DFT) calculations and thermochemical data for O2. Experimentally, 2D Ni silicate was exclusively observed at higher O2 pressures (∼10-6 Torr), higher annealing temperatures (1000 K), and more prolonged annealing (10 min) if the substrate contained any Ni and for initial Si coverages up to 2 monolayers. In contrast, decreasing the O2 pressure to ∼10-8 Torr and restricting the annealing temperature and time enabled 2D VDW silica formation. Amorphous 2D VDW silica was observed even when the substrate composition was tuned to lattice match crystalline 2D VDW silica. The trend of decreased O2 pressure favoring 2D VDW silica was consistent with the theoretical predictions; however, theory also suggested that sufficient Si coverage could avoid Ni silicate formation. The effect of epitaxial strain on 2D Ni silicate was investigated by modifying the solid solution alloy substrate composition. It was found that 2D Ni silicate will stretch to match the substrate lattice constant up to 1.12% tensile strain. When the lattice mismatch was over 1.40%, incommensurate crystalline domains were observed, indicating relaxation of the overlayer to its favored lattice constant. The limited epitaxial strain that could be applied was attributed to a combination of the 2D silicate stiffness, the insensitivity of its bonding to the substrate to its alignment with the substrate, and its lack of accessible structural rearrangements that can reduce the strain energy. The results demonstrate how the resulting 2D material can be manipulated through the growth conditions and how a solid solution alloy substrate can be used to maximize the epitaxial strain imparted to the 2D system.

8.
J Mater Chem B ; 7(35): 5392-5400, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31411619

RESUMEN

Ternary amorphous alloys in the magnesium (Mg)-zinc (Zn)-calcium (Ca) and the iron (Fe)-Mg-Zn systems are promising candidates for use in bioresorbable implants and devices. The optimal alloy compositions for biomedical applications should be chosen from a large variety of available alloys with best combination of mechanical properties (modulus, strength, hardness) and biological response (in situ degradation rates, cell adhesion and proliferation). As a first step towards establishing a database designed to enable such targeted material selection, amorphous alloy composition libraries were fabricated employing a combinatorial magnetron sputtering approach where Mg, Zn, and Ca/Fe are co-deposited from separate sources onto a silicon wafer substrate. Composition analysis using energy dispersive X-ray spectroscopy documented a composition range of ∼15-85 at% Mg, ∼6-55 at% Zn, and ∼5-60 at% Ca for the Mg-Zn-Ca library and ∼26-84 at% Mg, ∼10-61 at% Zn, and ∼7-55 at% Fe for the Fe-Mg-Zn library. X-ray diffraction measurements established that amorphous alloys (i.e., glasses) form in almost the entire range of composition at the high cooling rates during sputtering for both alloy libraries. Finally, the effective material modulus, the Oliver-Pharr hardness, and the yield strength values obtained using nanoindentation reveal a wide range of mechanical properties within both systems.


Asunto(s)
Implantes Absorbibles , Aleaciones/química , Materiales Biocompatibles/química , Ensayo de Materiales/métodos , Calcio/química , Dureza , Hierro/química , Magnesio/química , Zinc/química
9.
Rev Sci Instrum ; 90(3): 033707, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30927822

RESUMEN

Atomic force microscopy (AFM) is a versatile surface characterization method that can map a sample's topography with high spatial resolution while simultaneously interrogating its surface chemistry through the site-specific high-resolution quantification of the forces acting between the sample and the probe tip. Thanks to considerable advances in AFM measurement technology, such local measurements of chemical properties have gained much popularity in recent years. To this end, dynamic AFM methodologies are implemented where either the oscillation frequency or the oscillation amplitude and phase of the vibrating cantilever are recorded as a function of tip-sample distance and subsequently converted to reflect tip-sample forces or interaction potentials. Such conversion has, however, been shown to produce non-negligible errors when applying the most commonly used mathematical conversion procedures if oscillation amplitudes are of the order of the decay length of the interaction. Extending on these earlier findings, the computational study presented in this paper reveals that the degree of divergence from actual values may also critically depend on both the overall strength of tip-sample interaction and the distance at which the interaction is obtained. These systematic errors can, however, be effectively eliminated by using oscillation amplitudes that are sufficiently larger than the decay length of the interaction potential.

10.
Nat Commun ; 9(1): 3271, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115910

RESUMEN

The fracture toughness of glassy materials remains poorly understood. In large part, this is due to the disordered, intrinsically non-equilibrium nature of the glass structure, which challenges its theoretical description and experimental determination. We show that the notch fracture toughness of metallic glasses exhibits an abrupt toughening transition as a function of a well-controlled fictive temperature (Tf), which characterizes the average glass structure. The ordinary temperature, which has been previously associated with a ductile-to-brittle transition, is shown to play a secondary role. The observed transition is interpreted to result from a competition between the Tf-dependent plastic relaxation rate and an applied strain rate. Consequently, a similar toughening transition as a function of strain rate is predicted and demonstrated experimentally. The observed mechanical toughening transition bears strong similarities to the ordinary glass transition and explains the previously reported large scatter in fracture toughness data and ductile-to-brittle transitions.

11.
Sci Rep ; 8(1): 8758, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884812

RESUMEN

Mesenchymal stem cell (MSC) differentiation is regulated by surface modification including texturing, which is applied to materials to enhance tissue integration. Here, we used Pt57.5Cu14.7Ni5.3P22.5 bulk metallic glass (Pt-BMG) with nanopatterned surfaces achieved by thermoplastic forming to influence differentiation of human MSCs. Pt-BMGs are a unique class of amorphous metals with high strength, elasticity, corrosion resistance, and an unusual plastic-like processability. It was found that flat and nanopattened Pt-BMGs induced osteogenic and adipogenic differentiation, respectively. In addition, osteogenic differentiation on flat BMG exceeded that observed on medical grade titanium and was associated with increased formation of focal adhesions and YAP nuclear localization. In contrast, cells on nanopatterned BMGs exhibited rounded morphology, formed less focal adhesions and had mostly cytoplasmic YAP. These changes were preserved on nanopatterns made of nanorods with increased stiffness due to shorter aspect ratios, suggesting that MSC differentiation was primarily influenced by topography. These observations indicate that both elemental composition and nanotopography can modulate biochemical cues and influence MSCs. Moreover, the processability and highly tunable nature of Pt-BMGs enables the creation of a wide range of surface topographies that can be reproducibly and systematically studied, leading to the development of implants capable of engineering MSC functions.


Asunto(s)
Materiales Biocompatibles/química , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Nanoestructuras/química , Platino (Metal)/química , Adipogénesis , Células Cultivadas , Cobre/química , Vidrio/química , Humanos , Níquel/química , Osteogénesis , Propiedades de Superficie
12.
Phys Chem Chem Phys ; 19(48): 32492-32504, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29188828

RESUMEN

The ability to affect the surface properties of non-polar Cr2O3 films through polar ZnO(0001) and (0001[combining macron]) supports was investigated by characterizing the polarity of ZnO films grown on top of the Cr2O3 surfaces. The growth and geometric and electronic structures of the ZnO films were characterized with X-ray photoelectron spectroscopy, ultra-violet photoelectron spectroscopy, reflection high-energy electron diffraction, low-energy electron diffraction, and X-ray diffraction. The ZnO growth mode was Stranski-Krastanov, which can be attributed to the ZnO layers initially adopting a non-polar structure with a lower surface tension before transitioning to the polar bulk structure with a higher surface energy. A similar result has been reported for ZnO growth on α-Al2O3(0001), which is isostructural with Cr2O3. The polarity of the added ZnO layer was determined by examining the surface morphology following wet chemical etching with atomic force microscopy and by characterizing the surface reactivity via temperature-programmed desorption of alcohols, which strongly depends on the ZnO polarization direction. Consistent with prior work on ZnO growth on bulk Cr2O3(0001), both measurements indicate that thick Cr2O3 layers support ZnO(0001[combining macron]) growth regardless of the underlying ZnO substrate polarization; however, the polarization direction of ZnO films grown on Cr2O3 films less than three repeat units thick follows the direction of the underlying substrate polarization. These findings show that it is possible to manipulate the surface properties of non-polar materials with a polar substrate, but that the effect does not penetrate past just a couple of repeat units.

13.
Sci Rep ; 7(1): 7989, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28801665

RESUMEN

We used pulsed laser beam welding method to join Pd43Cu27Ni10P20 (at.%) bulk metallic glass and characterized the properties of the joint. Fusion zone and heat-affected zone in the weld joint can be maintained completely amorphous as confirmed by X-ray diffraction and differential scanning calorimetry. No visible defects were observed in the weld joint. Nanoindentation and bend tests were carried out to determine the mechanical properties of the weld joint. Fusion zone and heat-affected zone exhibit very similar elastic moduli and hardness when compared to the base material, and the weld joint shows high ductility in bending which is accomplished through the operation of multiple shear bands. Our results reveal that pulsed laser beam welding under appropriate processing parameters provides a practical viable method to join bulk metallic glasses.

14.
Phys Chem Chem Phys ; 19(21): 14001-14011, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28516996

RESUMEN

Two-dimensional (2D) silica (SiO2) and aluminosilicate (AlSi3O8) bilayers grown on Pd(111) were fabricated and systematically studied using ultrahigh vacuum surface analysis in combination with theoretical methods, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory. Based on LEED results, both SiO2 and AlSi3O8 bilayers start ordering above 850 K in 2 × 10-6 Torr oxygen. Both bilayers show hexagonal LEED patterns with a periodicity approximately twice that of the Pd(111) surface. Importantly, the SiO2 bilayer forms an incommensurate crystalline structure whereas the AlSi3O8 bilayer crystallizes in a commensurate structure. The incommensurate crystalline SiO2 structure on Pd(111) resulted in a moiré pattern observed with LEED and STM. Theoretical results show that straining the pure SiO2 bilayer to match Pd(111) would cost 0.492 eV per unit cell; this strain energy is reduced to just 0.126 eV per unit cell by replacing 25% of the Si with Al which softens the material and expands the unstrained lattice. Furthermore, the missing electron created by substituting Al3+ for Si4+ is supplied by Pd creating a chemical bond to the AlSi3O8 bilayer, whereas van der Waals interactions predominate for the SiO2 bilayer. The results reveal how the interplay between strain, doping, and charge transfer determine the structure of metal-supported 2D silicate bilayers and how these variables may potentially be exploited to manipulate 2D materials structures.

15.
Beilstein J Nanotechnol ; 8: 657-666, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28462067

RESUMEN

Quartz tuning forks that have a probe tip attached to the end of one of its prongs while the other prong is arrested to a holder ("qPlus" configuration) have gained considerable popularity in recent years for high-resolution atomic force microscopy imaging. The small size of the tuning forks and the complexity of the sensor architecture, however, often impede predictions on how variations in the execution of the individual assembly steps affect the performance of the completed sensor. Extending an earlier study that provided numerical analysis of qPlus-style setups without tips, this work quantifies the influence of tip attachment on the operational characteristics of the sensor. The results using finite element modeling show in particular that for setups that include a metallic tip that is connected via a separate wire to enable the simultaneous collection of local forces and tunneling currents, the exact realization of this wire connection has a major effect on sensor properties such as spring constant, quality factor, resonance frequency, and its deviation from an ideal vertical oscillation.

16.
ACS Appl Mater Interfaces ; 9(12): 11266-11271, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28281742

RESUMEN

Epitaxial strain can be a powerful parameter for directing the growth of thin films. Unfortunately, conventional materials only offer discrete choices for setting the lattice strain. In this work, it is demonstrated that epitaxial growth of transition metal alloy solid solutions can provide thermally stable, high-quality growth substrates with continuously tunable lattice constants. Molecular beam epitaxy was used to grow NixPd1-x(111) alloy films with lattice constants between 3.61 and 3.89 Å on the hexagonal (0001) basal planes of α-Al2O3 and Cr2O3 (grown as epitaxial films on α-Al2O3 (0001)). The Cr2O3 acted as an adhesion layer, which not only improved the high-temperature stability of the films but also produced single-domain films with NixPd1-x [112̅] parallel to Cr2O3 [112̅0], in contrast to growth on α-Al2O3 that yielded twinned films. Surface characterization by electron diffraction and scanning tunneling microscopy (STM) as well as bulk X-ray diffraction analysis indicated that the films are suitable as inexpensive and stable substrates for thin-film growth and for surface science studies. To demonstrate this suitability, bilayer SiO2, a two-dimensional van der Waals material, was grown on a NixPd1-x(111) film tuned to closely match the film's lattice constant, with STM and electron diffraction results revealing a highly ordered, single-phase crystalline state.

17.
Nanotechnology ; 27(48): 485708, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27811384

RESUMEN

A material's ability to interact with approaching matter is governed by the structural and chemical nature of its surfaces. Tailoring surfaces to meet specific needs requires developing an understanding of the underlying fundamental principles that determine a surface's reactivity. A particularly insightful case occurs when the surface site exhibiting the strongest attraction changes with distance. To study this issue, combined noncontact atomic force microscopy and scanning tunneling microscopy experiments have been carried out, where the evolution of the local chemical interaction with distance leads to a contrast reversal in the force channel. Using highly ordered pyrolytic graphite surfaces and metallic probe tips as a model system, we find that at larger tip-sample distances, carbon atoms exhibit stronger attractions than hollow sites while upon further approach, hollow sites become energetically more favorable. For the tunneling current that is recorded at large tip-sample separations during acquisition of a constant-force image, the contrast is dominated by the changes in tip-sample distance required to hold the force constant ('cross-talk'); at smaller separations the contrast turns into a convolution of this cross-talk and the local density of states. Analysis shows that the basic factors influencing the force channel contrast reversal are locally varying decay lengths and an onset of repulsive forces that occurs for distinct surface sites at different tip-sample distances. These findings highlight the importance of tip-sample distance when comparing the relative strength of site-specific chemical interactions.

18.
Sci Rep ; 6: 33277, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27615159

RESUMEN

Cell-cell fusion is fundamental to a multitude of biological processes ranging from cell differentiation and embryogenesis to cancer metastasis and biomaterial-tissue interactions. Fusogenic cells are exposed to biochemical and biophysical factors, which could potentially alter cell behavior. While biochemical inducers of fusion such as cytokines and kinases have been identified, little is known about the biophysical regulation of cell-cell fusion. Here, we designed experiments to examine cell-cell fusion using bulk metallic glass (BMG) nanorod arrays with varying biophysical cues, i.e. nanotopography and stiffness. Through independent variation of stiffness and topography, we found that nanotopography constitutes the primary biophysical cue that can override biochemical signals to attenuate fusion. Specifically, nanotopography restricts cytoskeletal remodeling-associated signaling, which leads to reduced fusion. This finding expands our fundamental understanding of the nanoscale biophysical regulation of cell fusion and can be exploited in biomaterials design to induce desirable biomaterial-tissue interactions.


Asunto(s)
Macrófagos/fisiología , Nanoestructuras/ultraestructura , Óxido de Aluminio/química , Animales , Técnicas de Cultivo de Célula , Fusión Celular , Línea Celular , Medios de Cultivo , Citoesqueleto/metabolismo , Activación Enzimática , Sistema de Señalización de MAP Quinasas , Ratones , Nanoestructuras/química , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
Beilstein J Nanotechnol ; 7: 946-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27547611
20.
Sci Rep ; 6: 26950, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27230692

RESUMEN

Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design.


Asunto(s)
Aleaciones/química , Aluminio/química , Antibacterianos/química , Técnicas Químicas Combinatorias , Plata/química , Aleaciones/farmacología , Antibacterianos/farmacología , Cobre/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/ultraestructura , Vidrio/química , Microscopía de Fuerza Atómica , Relación Estructura-Actividad , Circonio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...