Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 14(1): e0183322, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36656006

RESUMEN

Viruses are highly abundant and the main predator of microorganisms. Microorganisms of each domain of life are infected by dedicated viruses. Viruses infecting archaea are genomically and structurally highly diverse. Archaea are undersampled for viruses in comparison with bacteria and eukaryotes. Consequently, the infection mechanisms of archaeal viruses are largely unknown, and most available knowledge stems from viruses infecting a select group of archaea, such as crenarchaea. We employed Haloferax tailed virus 1 (HFTV1) and its host, Haloferax gibbonsii LR2-5, to study viral infection in euryarchaea. We found that HFTV1, which has a siphovirus morphology, is virulent, and interestingly, viral particles adsorb to their host several orders of magnitude faster than most studied haloarchaeal viruses. As the binding site for infection, HFTV1 uses the cell wall component surface (S)-layer protein. Electron microscopy of infected cells revealed that viral particles often made direct contact with their heads to the cell surface, whereby the virion tails were perpendicular to the surface. This seemingly unfavorable orientation for genome delivery might represent a first reversible contact between virus and cell and could enhance viral adsorption rates. In a next irreversible step, the virion tail is orientated toward the cell surface for genome delivery. With these findings, we uncover parallels between entry mechanisms of archaeal viruses and those of bacterial jumbo phages and bacterial gene transfer agents. IMPORTANCE Archaeal viruses are the most enigmatic members of the virosphere. These viruses infect ubiquitous archaea and display an unusually high structural and genetic diversity. Unraveling their mechanisms of infection will shed light on the question if entry and egress mechanisms are highly conserved between viruses infecting a single domain of life or if these mechanisms are dependent on the morphology of the virus and the growth conditions of the host. We studied the entry mechanism of the tailed archaeal virus HFTV1. This showed that despite "typical" siphovirus morphology, the infection mechanism is different from standard laboratory models of tailed phages. We observed that particles bound first with their head to the host cell envelope, and, as such, we discovered parallels between archaeal viruses and nonmodel bacteriophages. This work contributes to a better understanding of entry mechanisms of archaeal viruses and a more complete view of microbial viruses in general.


Asunto(s)
Virus de Archaea , Bacteriófagos , Haloferax , Archaea/genética , Haloferax/genética , Acoplamiento Viral , Genoma Viral , Bacterias/genética , Virus de Archaea/genética , Bacteriófagos/genética
2.
Viruses ; 14(6)2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35746816

RESUMEN

Viruses can infect members of all three domains of life. However, little is known about viruses infecting archaea and the mechanisms that determine their host interactions are poorly understood. Investigations of molecular mechanisms of viral infection rely on genetically accessible virus-host model systems. Euryarchaea belonging to the genus Haloferax are interesting models, as a reliable genetic system and versatile microscopy methods are available. However, only one virus infecting the Haloferax species is currently available. In this study, we tested ~100 haloarchaeal virus isolates for their infectivity on 14 Haloferax strains. From this, we identified 10 virus isolates in total capable of infecting Haloferax strains, which represented myovirus or siphovirus morphotypes. Surprisingly, the only susceptible strain of all 14 tested was Haloferax gibbonsii LR2-5, which serves as an auspicious host for all of these 10 viruses. By applying comparative genomics, we shed light on factors determining the host range of haloarchaeal viruses on Haloferax. We anticipate our study to be a starting point in the study of haloarchaeal virus-host interactions.


Asunto(s)
Haloferax , Archaea , Virus ADN , Genómica , Haloferax/genética , Especificidad del Huésped
3.
Front Microbiol ; 12: 625599, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33664716

RESUMEN

Hypersaline environments are the source of many viruses infecting different species of halophilic euryarchaea. Information on infection mechanisms of archaeal viruses is scarce, due to the lack of genetically accessible virus-host models. Recently, a new archaeal siphovirus, Haloferax tailed virus 1 (HFTV1), was isolated together with its host belonging to the genus Haloferax, but it is not infectious on the widely used model euryarcheon Haloferax volcanii. To gain more insight into the biology of HFTV1 host strain LR2-5, we studied characteristics that might play a role in its virus susceptibility: growth-dependent motility, surface layer, filamentous surface structures, and cell shape. Its genome sequence showed that LR2-5 is a new strain of Haloferax gibbonsii. LR2-5 lacks obvious viral defense systems, such as CRISPR-Cas, and the composition of its cell surface is different from Hfx. volcanii, which might explain the different viral host range. This work provides first deep insights into the relationship between the host of halovirus HFTV1 and other members of the genus Haloferax. Given the close relationship to the genetically accessible Hfx. volcanii, LR2-5 has high potential as a new model for virus-host studies in euryarchaea.

4.
Microorganisms ; 9(2)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499340

RESUMEN

Several haloarchaea are reported to be pleomorphic, while others exhibit remarkable shapes, such as squares. Recently, Haloferax volcanii was found to alter its morphology during growth. Cells are motile rods in early exponential phase, and immotile plates in stationary phase. It is unknown if this growth phase dependent cell shape alteration is a specific feature of Hfx. volcanii, or conserved amongst haloarchaea. Here, we studied the cell shape and motility of two haloarchaea species Haloarcula hispanica and Haloarcula californiae. With a combination of light and electron microscopy, we observed that both strains undergo a growth phase dependent morphological development, albeit in a slightly different fashion as Hfx. volcanii. For both Haloarcula strains, the cell size is changing throughout growth. Cell shape seems to be related with motility, as highly motile cells on semi-solid agar plates are predominantly rod-shaped. We conclude that the growth phase dependent cell morphology alteration might be a common feature amongst haloarchaea, and that cell shape is generally linked with a motile life style. The conservation of this phenomenon underscores the importance of studies of the molecular mechanisms regulating cell shape in archaea.

5.
Viruses ; 13(2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499367

RESUMEN

The bacterial and archaeal cell surface is decorated with filamentous surface structures that are used for different functions, such as motility, DNA exchange and biofilm formation. Viruses hijack these structures and use them to ride to the cell surface for successful entry. In this review, we describe currently known mechanisms for viral attachment, translocation, and entry via filamentous surface structures. We describe the different mechanisms used to exploit various surface structures bacterial and archaeal viruses. This overview highlights the importance of filamentous structures at the cell surface for entry of prokaryotic viruses.


Asunto(s)
Archaea/virología , Virus de Archaea/fisiología , Bacterias/virología , Bacteriófagos/fisiología , Citoesqueleto/virología , Proteínas Fimbrias , Fimbrias Bacterianas/virología , Flagelos/virología
6.
FEMS Microbiol Ecol ; 94(7)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29718229

RESUMEN

Holospora and related bacteria are a group of obligate Paramecium symbionts. Characteristic features are their infectivity, the presence of two distinct morphotypes, and usually a strict specialization for a single Paramecium species as host and for a nuclear compartment (either somatic or generative nucleus) for reproduction. Holospora caryophila steps out of line, naturally occurring in Paramecium biaurelia and Paramecium caudatum. This study addresses the phylogenetic relationship among H. caryophila and other Holospora species based on 16S rRNA gene sequence comparison analyzing the type strain and seven new macronuclear symbionts. Key aspects of Holospora physiology such as infectivity, symbiosis establishment and host range were determined by comprehensive infection assays. Detailed morphological investigations and sequence-based phylogeny confirmed a high similarity between the type strain of H. caryophila and the novel strains. Surprisingly, they are only distantly related to other Holospora species suggesting that they belong to a new genus within the family Holosporaceae, here described as Preeria caryophila comb. nov. Adding to this phylogenetic distance, we also observed a much broader host range, comprising at least eleven Paramecium species. As these potential host species exhibit substantial differences in frequency of sexual processes, P. caryophila demonstrates which adaptations are crucial for macronuclear symbionts facing regular destruction of their habitat.


Asunto(s)
Holosporaceae/clasificación , Holosporaceae/genética , Paramecium/microbiología , Simbiosis/fisiología , Aclimatación , Animales , Secuencia de Bases , Especificidad del Huésped/fisiología , Estadios del Ciclo de Vida , Filogenia , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...