Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 59(24): 9485-9490, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32053279

RESUMEN

Reported herein is a visible-light-mediated radical approach to the α-alkylation of ketones. This method exploits the ability of a nucleophilic organocatalyst to generate radicals upon SN 2-based activation of alkyl halides and blue light irradiation. The resulting open-shell intermediates are then intercepted by weakly nucleophilic silyl enol ethers, which would be unable to directly attack the alkyl halides through a traditional two-electron path. The mild reaction conditions allowed functionalization of the α position of ketones with functional groups that are not compatible with classical anionic strategies. In addition, the redox-neutral nature of this process makes it compatible with a cinchona-based primary amine catalyst, which was used to develop a rare example of enantioselective organocatalytic radical α-alkylation of ketones.

2.
Chem Sci ; 10(21): 5484-5488, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31293731

RESUMEN

We report a photoinduced three-component radical process, which couples readily available alkyl chlorides, maleimides, and heteroaromatic fragments to rapidly generate complex chiral products with high diastereocontrol. This method generates radicals via an SN2-based photochemical catalytic mechanism, which is not reliant on the redox properties of the precursors. It therefore grants access to open-shell intermediates from substrates that would be incompatible with or inert to classical radical-generating strategies. The redox-neutral conditions of this process make it tolerant of redox-sensitive substrates and allow the installation of multiple biologically relevant heterocycles within the cascade products.

3.
Chemistry ; 25(38): 9088-9097, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31046171

RESUMEN

In this work, the reactivities of acetonyl and benzoyl radicals in aromatic substitution and addition reactions have been compared in an experimental and computational study. The results show that acetonyl is more electrophilic than benzoyl, which is rather nucleophilic. A Hammett plot analysis of the addition reactions of the two radicals to substituted styrenes clearly support the nucleophilicity of benzoyl, but in the case of acetonyl, no satisfactory linear correlation with a single substituent-related parameter was found. Computational calculations helped to rationalize this effect, and a good linear correlation was found with a combination of polar parameters (σ+ ) and the radical stabilization energies of the formed intermediates. Based on the calculated philicity indices for benzoyl and acetonyl, a quantitative comparison of these two radicals with many other reported radicals is possible, which may help to predict the reactivities of other aromatic radical substitution reactions.

4.
Nat Chem ; 11(2): 129-135, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30510217

RESUMEN

Chemists extensively use free radical reactivity for applications in organic synthesis, materials science, and life science. Traditionally, generating radicals requires strategies that exploit the bond dissociation energy or the redox properties of the precursors. Here, we disclose a photochemical catalytic approach that harnesses different physical properties of the substrate to form carbon radicals. We use a nucleophilic dithiocarbamate anion catalyst, adorned with a well-tailored chromophoric unit, to activate alkyl electrophiles via an SN2 pathway. The resulting photon-absorbing intermediate affords radicals upon homolytic cleavage induced by visible light. This catalytic SN2-based strategy, which exploits a fundamental mechanistic process of ionic chemistry, grants access to open-shell intermediates from a variety of substrates that would be incompatible with or inert to classical radical-generating strategies. We also describe how the method's mild reaction conditions and high functional group tolerance could be advantageous for developing C-C bond-forming reactions, for streamlining the preparation of a marketed drug, for the late-stage elaboration of biorelevant compounds and for enantioselective radical catalysis.

6.
Org Lett ; 18(19): 4944-4947, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27649289

RESUMEN

This study details how peroxyketals, commercially available thermal initiators, and structurally related peroxides are activated in the presence of an acid catalyst to generate radicals at room temperature and below. This simple combination of two substrates was shown to efficiently initiate a variety of radical processes. This phenomenon is rationalized by the acid-catalyzed in situ formation of highly unstable alkenyl peroxides which readily decompose into initiating radical species.

7.
Angew Chem Int Ed Engl ; 54(40): 11848-51, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26267787

RESUMEN

The acid-mediated reaction of ketones with hydroperoxides generates radicals, a process with reaction conditions similar to those of the Baeyer-Villiger oxidation but with an outcome resembling the formation of hydroxyl radicals via ozonolysis in the atmosphere. The Baeyer-Villiger oxidation forms esters from ketones, with the preferred use of peracids. In contrast, alkyl hydroperoxides and hydrogen peroxide react with ketones by condensation to form alkenyl peroxides, which rapidly undergo homolytic O-O bond cleavage to form radicals. Both reactions are believed to proceed via Criegee adducts, but the electronic nature of the peroxide residue determines the subsequent reaction pathways. DFT calculations and experimental results support the idea that, unlike previously assumed, the Baeyer-Villiger reaction is not intrinsically difficult with alkyl hydroperoxides and hydrogen peroxide but rather that the alternative radical formation is increasingly favored.

8.
Angew Chem Int Ed Engl ; 53(33): 8737-40, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-24777703

RESUMEN

Based on a mechanistic study, we have discovered a Brønsted acid catalyzed formation of ketone radicals. This is believed to proceed via thermally labile alkenyl peroxides formed in situ from ketones and hydroperoxides. The discovery could be utilized to develop a multicomponent radical addition of unactivated ketones and tert-butyl hydroperoxide to olefins. The resulting γ-peroxyketones are synthetically useful intermediates that can be further transformed into 1,4-diketones, homoaldol products, and alkyl ketones. A one-pot reaction yielding a pharmaceutically active pyrrole is also described.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...