Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Front Cell Infect Microbiol ; 13: 1113528, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065199

RESUMEN

The Gram-negative bacterium Neisseria meningitidis, which causes meningitis in humans, has been demonstrated to manipulate or alter host signalling pathways during infection of the central nervous system (CNS). However, these complex signalling networks are not completely understood. We investigate the phosphoproteome of an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB) based on human epithelial choroid plexus (CP) papilloma (HIBCPP) cells during infection with the N. meningitidis serogroup B strain MC58 in presence and absence of the bacterial capsule. Interestingly, our data demonstrates a stronger impact on the phosphoproteome of the cells by the capsule-deficient mutant of MC58. Using enrichment analyses, potential pathways, molecular processes, biological processes, cellular components and kinases were determined to be regulated as a consequence of N. meningitidis infection of the BCSFB. Our data highlight a variety of protein regulations that are altered during infection of CP epithelial cells with N. meningitidis, with the regulation of several pathways and molecular events only being detected after infection with the capsule-deficient mutant. Mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD038560.


Asunto(s)
Neisseria meningitidis , Humanos , Neisseria meningitidis/fisiología , Plexo Coroideo/microbiología , Células Epiteliales/microbiología , Barrera Hematoencefálica/microbiología , Línea Celular Tumoral
4.
Cell Tissue Res ; 392(2): 393-412, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36781482

RESUMEN

Endothelial cells play a major part in the regulation of vascular permeability and angiogenesis. According to their duty to fit the needs of the underlying tissue, endothelial cells developed different subtypes with specific endothelial microdomains as caveolae, fenestrae and transendothelial channels which regulate nutrient exchange, leukocyte migration, and permeability. These microdomains can exhibit diaphragms that are formed by the endothelial cell-specific protein plasmalemma vesicle-associated protein (PLVAP), the only known protein component of these diaphragms. Several studies displayed an involvement of PLVAP in diseases as cancer, traumatic spinal cord injury, acute ischemic brain disease, transplant glomerulopathy, Norrie disease and diabetic retinopathy. Besides an upregulation of PLVAP expression within these diseases, pro-angiogenic or pro-inflammatory responses were observed. On the other hand, loss of PLVAP in knockout mice leads to premature mortality due to disrupted homeostasis. Generally, PLVAP is considered as a major factor influencing the permeability of endothelial cells and, finally, to be involved in the regulation of vascular permeability. Following these observations, PLVAP is debated as a novel therapeutic target with respect to the different vascular beds and tissues. In this review, we highlight the structure and functions of PLVAP in different endothelial types in health and disease.


Asunto(s)
Retinopatía Diabética , Células Endoteliales , Animales , Encéfalo/metabolismo , Permeabilidad Capilar/fisiología , Proteínas Portadoras/metabolismo , Células Endoteliales/metabolismo , Proteínas de la Membrana/metabolismo , Humanos
5.
J Neurosci Res ; 101(4): 524-540, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36583371

RESUMEN

The choroid plexus (CP) is part of the blood-cerebrospinal fluid barrier (BCSFB) and was recently described as an important component of the circadian clock system. It is the principal source of cerebrospinal fluid (CSF) and responsible for the synthesis and secretion of various neuroprotective peptides including those involved in amyloid-ß (Aß) transport/degradation, contributing to Aß homeostasis. Inadequate Aß metabolic clearance and transport across the BCSFB have been associated with circadian dysfunctions in Alzheimer's disease (AD) patients. To investigate whether AD pathology influences Aß scavengers circadian expression, we collected CP at different time points from an AD mouse model (APP/PS1) (female and male animals, aged 6- and 12-months-old) and analyzed their mRNA expression by Real-time RT-PCR. Only angiotensin-converting enzyme (Ace) expression in 6-month-old female wild-type mice and transthyretin (Ttr) expression in 12-month-old female wild-type mice presented significant rhythmicity. The circadian rhythmicity of Ace and Ttr, prompt us to analyze the involvement of circadian rhythm in Aß uptake. A human CP papilloma (HIBCPP) cell line was incubated with Aß-488 and uptake was evaluated at different time points using flow cytometry. Aß uptake displayed circadian rhythmicity. Our results suggest that AD might affect Aß scavengers rhythmicity and that Aß clearance is a rhythmic process possibly regulated by the rhythmic expression of Aß scavengers.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Femenino , Ratones , Animales , Lactante , Enfermedad de Alzheimer/metabolismo , Plexo Coroideo/metabolismo , Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Ritmo Circadiano , Ratones Transgénicos , Precursor de Proteína beta-Amiloide/genética , Modelos Animales de Enfermedad
6.
STAR Protoc ; 3(4): 101816, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36386888

RESUMEN

Choroid plexus, located in brain ventricles, is the site of blood-cerebrospinal fluid barrier that contains endothelial cells and an epithelial monolayer separated by stroma. We established a two-cell-type model of the human choroid plexus consisting of immortalized endothelial cells (iHCPEnC) and epithelial papilloma (HIBCPP) cells grown on opposite sides of filter supports. In this protocol, we describe the preparation of this model, the measurement of transepithelial electrical resistance (TEER), and immunofluorescence imaging-based analysis to determine the barrier function. For complete details on the use and execution of this protocol, please refer to Muranyi et al. (2022).


Asunto(s)
Plexo Coroideo , Células Endoteliales , Humanos , Células Epiteliales , Barrera Hematoencefálica , Recuento de Células
7.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361697

RESUMEN

The human central nervous system (CNS) is separated from the blood by distinct cellular barriers, including the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CFS) barrier (BCSFB). Whereas at the center of the BBB are the endothelial cells of the brain capillaries, the BCSFB is formed by the epithelium of the choroid plexus. Invasion of cells of either the BBB or the BCSFB is a potential first step during CNS entry by the Gram-positive bacterium Listeria monocytogenes (Lm). Lm possesses several virulence factors mediating host cell entry, such as the internalin protein family-including internalin (InlA), which binds E-cadherin (Ecad) on the surface of target cells, and internalin B (InlB)-interacting with the host cell receptor tyrosine kinase Met. A further family member is internalin (InlF), which targets the intermediate filament protein vimentin. Whereas InlF has been shown to play a role during brain invasion at the BBB, its function during infection at the BCSFB is not known. We use human brain microvascular endothelial cells (HBMEC) and human choroid plexus epithelial papilloma (HIBCPP) cells to investigate the roles of InlF and vimentin during CNS invasion by Lm. Whereas HBMEC present intracellular and surface vimentin (besides Met), HIBCPP cells do not express vimentin (except Met and Ecad). Treatment with the surface vimentin modulator withaferin A (WitA) inhibited invasion of Lm into HBMEC, but not HIBCPP cells. Invasion of Lm into HBMEC and HIBCPP cells is, however, independent of InlF, since a deletion mutant of Lm lacking InlF did not display reduced invasion rates.


Asunto(s)
Listeria monocytogenes , Humanos , Barrera Hematoencefálica/metabolismo , Vimentina/metabolismo , Filamentos Intermedios/metabolismo , Células Endoteliales/metabolismo , Proteínas Bacterianas/metabolismo
8.
STAR Protoc ; 3(4): 101676, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36103307

RESUMEN

At present, the only approach to investigate the transmigration of Trypanosoma brucei, the causative agent of human African trypanosomiasis, from blood to cerebrospinal fluid is through animal experiments. This protocol details how to analyze the transmigration efficiency using an in vitro model of the blood-cerebrospinal fluid (blood-CSF) barrier. We describe how to grow human choroid plexus epithelial cells on cell culture filter inserts to form the barrier, followed by isolating and quantifying genomic DNA of transmigrated parasites by qPCR. For complete details on the use and execution of this protocol, please refer to Speidel et al. (2022).


Asunto(s)
Barrera Hematoencefálica , Células Epiteliales , Animales , Humanos , Técnicas de Cultivo de Célula
9.
Am J Physiol Cell Physiol ; 323(6): C1823-C1842, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35938676

RESUMEN

The objectives of these studies were twofold: 1) to characterize the human choroid plexus papilloma (HIBCPP) cell line as a model of the blood-cerebrospinal fluid barrier (BCSFB) via morphology, tightness, and polarization of transporters in choroid plexus epithelia (CPe), and 2) to utilize Ussing-style electrophysiology to elucidate signaling pathways associated with the activation of the transient receptor potential vanilloid 4 (TRPV4) channel involved in cerebrospinal fluid (CSF) secretion. RT-PCR was implemented to determine gene expression of cell fate markers, junctional complex proteins, and transporters of interest. Scanning electron microscopy and confocal three-dimensional renderings of cultures grown on permeable supports were utilized to delineate the morphology of the brush border, junctional complexes, and polarization of key transporters. Electrophysiology was used to understand and explore TRPV4-mediated signaling in the HIBCPP cell line, considering both short-circuit current (Isc) and conductance responses. HIBCPP cells grown under optimized culture conditions exhibited minimal multilayering, developed an intermediate resistance monolayer, retained differentiation properties, and expressed, and correctly localized, junctional proteins and native transporters. We found that activation of TRPV4 resulted in a robust, multiphasic change in electrogenic ion flux and increase in conductance accompanied by substantial fluid secretion. This response appears to be modulated by a number of different effectors, implicating phospholipase C (PLC), protein kinase C (PKC), and phosphoinositide 3-kinase (PI3K) in TRPV4-mediated ion flux. The HIBCPP cell line is a representative model of the human BCSFB, which can be utilized for studies of transporter function, intracellular signaling, and regulation of CSF production.


Asunto(s)
Plexo Coroideo , Fosfatidilinositol 3-Quinasas , Humanos , Plexo Coroideo/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular , Barrera Hematoencefálica/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transducción de Señal , Células Epiteliales/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
10.
Pharmaceutics ; 14(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36015358

RESUMEN

The pharmaceutical research sector has been facing the challenge of neurotherapeutics development and its inherited high-risk and high-failure-rate nature for decades. This hurdle is partly attributable to the presence of brain barriers, considered both as obstacles and opportunities for the entry of drug substances. The blood-cerebrospinal fluid (CSF) barrier (BCSFB), an under-studied brain barrier site compared to the blood-brain barrier (BBB), can be considered a potential therapeutic target to improve the delivery of CNS therapeutics and provide brain protection measures. Therefore, leveraging robust and authentic in vitro models of the BCSFB can diminish the time and effort spent on unproductive or redundant development activities by a preliminary assessment of the desired physiochemical behavior of an agent toward this barrier. To this end, the current review summarizes the efforts and progresses made to this research area with a notable focus on the attribution of these models and applied techniques to the pharmaceutical sector and the development of neuropharmacological therapeutics and diagnostics. A survey of available in vitro models, with their advantages and limitations and cell lines in hand will be provided, followed by highlighting the potential applications of such models in the (neuro)therapeutics discovery and development pipelines.

11.
Nat Commun ; 13(1): 3128, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668073

RESUMEN

The rate of SARS-CoV-2 infections in children remains unclear due to many asymptomatic cases. We present a study of cross-sectional seroprevalence surveys of anti-SARS-CoV-2 IgG in 10,358 children recruited in paediatric hospitals across Germany from June 2020 to May 2021. Seropositivity increased from 2.0% (95% CI 1.6, 2.5) to 10.8% (95% CI 8.7, 12.9) in March 2021 with little change up to May 2021. Rates increased by migrant background (2.8%, 4.4% and 7.8% for no, one and two parents born outside Germany). Children under three were initially 3.6 (95% CI 2.3, 5.7) times more likely to be seropositive with levels equalising later. The ratio of seropositive cases per recalled infection decreased from 8.6 to 2.8. Since seropositivity exceeds the rate of recalled infections considerably, serologic testing may provide a more valid estimate of infections, which is required to assess both the spread and the risk for severe outcomes of SARS-CoV-2 infections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/epidemiología , Niño , Estudios Transversales , Alemania/epidemiología , Humanos , Estudios Seroepidemiológicos
12.
iScience ; 25(6): 104383, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35633941

RESUMEN

The choroid plexus (CP) is a highly vascularized structure containing endothelial and epithelial cells located in the ventricular system of the central nervous system (CNS). The role of the fenestrated CP endothelium is under-researched and requires the generation of an immortalized CP endothelial cell line with preserved features. Transduction of primary human CP endothelial cells (HCPEnC) with the human telomerase reverse transcriptase (hTERT) resulted in immortalized HCPEnC (iHCPEnC), which grew as monolayer with contact inhibition, formed capillary-like tubes in Matrigel, and showed no colony growth in soft agar. iHCPEnC expressed pan-endothelial markers and presented characteristic plasmalemma vesicle-associated protein-containing structures. Cultivation of iHCPEnC and human epithelial CP papilloma (HIBCPP) cells on opposite sides of cell culture filter inserts generated an in vitro model with a consistently enhanced barrier function specifically by iHCPEnC. Overall, iHCPEnC present a tool that will contribute to the understanding of CP organ functions, especially endothelial-epithelial interplay.

13.
Am J Physiol Cell Physiol ; 323(1): C1-C13, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35508188

RESUMEN

The choroid plexus epithelium (CPe) forms a barrier between the cerebral blood supply and the cerebrospinal fluid (CSF), establishing the blood-CSF barrier (BCSFB). CSF is actively secreted by the CPe via tightly controlled processes involving multiple channels, transporters, and pumps. The importance of controlling CSF production and composition has been accentuated recently with an appreciation of CSF dysfunction in many pathologies. For mechanistic studies of CSF production, isolated CPe cell lines are valuable for the testing of hypotheses and potential drug targets. Although several continuous CPe cell lines have been described, none appear to have all the characteristics of the native epithelium and each must be used judiciously. The porcine choroid plexus-Riems (PCP-R) cell line forms a high-resistance monolayer characteristic of a barrier epithelium. Conservation of this phenotype is unusual among CPe cell lines, making this model useful for studies of the effects of infection, injury, and drugs on permeability. We have recently discovered that, although this line expresses many of the transporters expressed in the native tissue, some are mispolarized. As a result, inferences regarding fluid/electrolyte flux and the resultant CSF production should be pursued with caution. Furthermore, extended culture periods and changes in media composition result in significant morphological and functional variability. These studies provide a more detailed characterization of the PCP-R cell line concerning transporter expression, polarization, and functionality, as well as plasticity in culture, with the goal to provide the scientific community with information necessary to optimize future experiments with this model.


Asunto(s)
Proteínas Portadoras , Plexo Coroideo , Animales , Barrera Hematoencefálica/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/metabolismo , Epitelio/metabolismo , Porcinos
14.
iScience ; 25(4): 104014, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35313698

RESUMEN

Trypanosoma brucei is the causative agent of human African trypanosomiasis. The parasite transmigrates from blood vessels across the choroid plexus epithelium to enter the central nervous system, a process that leads to the manifestation of second stage sleeping sickness. Using an in vitro model of the blood-cerebrospinal fluid barrier, we investigated the mechanism of the transmigration process. For this, a monolayer of human choroid plexus papilloma cells was cultivated on a permeable membrane that mimics the basal lamina underlying the choroid plexus epithelial cells. Plexus cells polarize and interconnect forming tight junctions. Deploying different T. brucei brucei strains, we observed that geometry and motility are important for tissue invasion. Using fluorescent microscopy, the parasite's moving was visualized between plexus epithelial cells. The presented model provides a simple tool to screen trypanosome libraries for their ability to infect cerebrospinal fluid or to test the impact of chemical substances on transmigration.

15.
Fluids Barriers CNS ; 18(1): 53, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863201

RESUMEN

BACKGROUND: The Gram-negative bacterium Neisseria meningitidis (Nm) can cause meningitis in humans, but the host signalling pathways manipulated by Nm during central nervous system (CNS) entry are not completely understood. METHODS: We investigate the role of the mitogen-activated protein kinases (MAPK) Erk1/2 and p38 in an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB) based on human epithelial choroid plexus (CP) papilloma (HIBCPP) cells during infection with Nm serogroup B (NmB) and serogroup C (NmC) strains. A transcriptome analysis of HIBCPP cells following infection with Nm by massive analysis of cDNA ends (MACE) was done to further characterize the cellular response to infection of the barrier. RESULTS: Interestingly, whereas NmB and NmC wild type strains required active Erk1/2 and p38 pathways for infection, invasion by capsule-deficient mutants was independent of Erk1/2 and, in case of the NmB strain, of p38 activity. The transcriptome analysis of HIBCPP cells following infection with Nm demonstrated specific regulation of genes involved in the immune response dependent on Erk1/2 signalling. Gene ontology (GO) analysis confirmed loss of MAPK signalling after Erk1/2 inhibition and revealed an additional reduction of cellular responses including NFκB and JAK-STAT signalling. Interestingly, GO terms related to TNF signalling and production of IL6 were lost specifically following Erk1/2 inhibition during infection with wild type Nm, which correlated with the reduced infection rates by the wild type in absence of Erk1/2 signalling. CONCLUSION: Our data point towards a role of MAPK signalling during infection of the CP epithelium by Nm, which is strongly influenced by capsule expression, and affects infection rates as well as the host cell response.


Asunto(s)
Barrera Hematoencefálica , Líquido Cefalorraquídeo , Plexo Coroideo , Células Epiteliales , Interacciones Huésped-Patógeno/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Neisseria meningitidis/patogenicidad , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/microbiología , Línea Celular Tumoral , Líquido Cefalorraquídeo/inmunología , Líquido Cefalorraquídeo/metabolismo , Líquido Cefalorraquídeo/microbiología , Plexo Coroideo/inmunología , Plexo Coroideo/metabolismo , Plexo Coroideo/microbiología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Humanos
16.
Pathog Dis ; 79(7)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34410374

RESUMEN

Neisseria meningitis (Nm) is a human-specific bacterial pathogen that can cause sepsis and meningitis. To cause meningitis Nm must enter the central nervous system (CNS) across one of the barriers between the blood and the brain. We have previously shown that a capsule-depleted Serogroup B strain of Nm displays enhanced invasion into human choroid plexus (CP) epithelial papilloma (HIBCPP) cells, which represent an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB). Still, the processes involved during CNS invasion by Nm, especially the role of host cell actin cytoskeleton remodeling, are not investigated in detail. Here, we demonstrate that invasion into CP epithelial cells by encapsulated and capsule-depleted Nm is mediated by distinct host cell pathways. Whereas a Serogroup B wild-type strain enters HIBCPP cells by a possibly dynamin-independent, but actin related protein 2/3 (Arp2/3)-dependent mechanism, invasion by a capsule-depleted mutant is reduced by the dynamin inhibitor dynasore and Arp2/3-independent. Both wild-type and mutant bacteria require Src kinase activity for entry into HIBCPP cells. Our data show that Nm can employ different mechanisms for invasion into the CP epithelium dependent on the presence of a capsule.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Cápsulas/metabolismo , Dinaminas/metabolismo , Células Epiteliales/microbiología , Infecciones Meningocócicas/metabolismo , Infecciones Meningocócicas/microbiología , Neisseria meningitidis/metabolismo , Actinas/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/microbiología , Células Cultivadas , Plexo Coroideo/metabolismo , Plexo Coroideo/microbiología , Endocitosis , Células Epiteliales/metabolismo , Epitelio/metabolismo , Epitelio/microbiología , Interacciones Huésped-Patógeno , Humanos , Neisseria meningitidis/patogenicidad , Transducción de Señal , Virulencia , Familia-src Quinasas/metabolismo
17.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281178

RESUMEN

Quercetin-3-glucuronide (Q3GA), the main phase II metabolite of quercetin (Q) in human plasma, is considered to be a more stable form of Q for transport with the bloodstream to tissues, where it can be potentially deconjugated by ß-glucuronidase (ß-Gluc) to Q aglycone, which easily enters the brain. This study evaluates the effect of lipopolysaccharide (LPS)-induced acute inflammation on ß-Gluc gene expression in the choroid plexus (ChP) and its activity in blood plasma, ChP and cerebrospinal fluid (CSF), and the concentration of Q and its phase II metabolites in blood plasma and CSF. Studies were performed on saline- and LPS-treated adult ewes (n = 40) receiving Q3GA intravenously (n = 16) and on primary rat ChP epithelial cells and human ChP epithelial papilloma cells. We observed that acute inflammation stimulated ß-Gluc activity in the ChP and blood plasma, but not in ChP epithelial cells and CSF, and did not affect Q and its phase II metabolite concentrations in plasma and CSF, except Q3GA, for which the plasma concentration was higher 30 min after administration (p < 0.05) in LPS- compared to saline-treated ewes. The lack of Q3GA deconjugation in the ChP observed under physiological and acute inflammatory conditions, however, does not exclude its possible role in the course of neurodegenerative diseases.


Asunto(s)
Plexo Coroideo/metabolismo , Glucuronidasa/metabolismo , Quercetina/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular Tumoral , Plexo Coroideo/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Glucuronidasa/sangre , Glucuronidasa/líquido cefalorraquídeo , Humanos , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Masculino , Cultivo Primario de Células , Quercetina/análogos & derivados , Quercetina/sangre , Quercetina/líquido cefalorraquídeo , Ratas , Ratas Wistar , Ovinos
18.
Front Cell Infect Microbiol ; 11: 639620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763387

RESUMEN

Streptococcus suis (S. suis) is an important opportunistic pathogen, which can cause septicemia and meningitis in pigs and humans. Previous in vivo observations in S. suis-infected pigs revealed lesions at the choroid plexus (CP). In vitro experiments with primary porcine CP epithelial cells (PCPEC) and human CP epithelial papilloma (HIBCPP) cells demonstrated that S. suis can invade and traverse the CP epithelium, and that the CP contributes to the inflammatory response via cytokine expression. Here, next generation sequencing (RNA-seq) was used to compare global transcriptome profiles of PCPEC and HIBCPP cells challenged with S. suis serotype (ST) 2 infected in vitro, and of pigs infected in vivo. Identified differentially expressed genes (DEGs) were, amongst others, involved in inflammatory responses and hypoxia. The RNA-seq data were validated via quantitative PCR of selected DEGs. Employing Gene Set Enrichment Analysis (GSEA), 18, 28, and 21 enriched hallmark gene sets (GSs) were identified for infected HIBCPP cells, PCPEC, and in the CP of pigs suffering from S. suis ST2 meningitis, respectively, of which eight GSs overlapped between the three different sample sets. The majority of these GSs are involved in cellular signaling and pathways, immune response, and development, including inflammatory response and hypoxia. In contrast, suppressed GSs observed during in vitro and in vivo S. suis ST2 infections included those, which were involved in cellular proliferation and metabolic processes. This study suggests that similar cellular processes occur in infected human and porcine CP epithelial cells, especially in terms of inflammatory response.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus suis , Animales , Plexo Coroideo , Perfilación de la Expresión Génica , Humanos , Hipoxia , Serogrupo , Porcinos , Transcriptoma
19.
J Mol Neurosci ; 71(3): 625-637, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32816235

RESUMEN

The choroid plexus (CP) constitutes a barrier between the blood and the cerebrospinal fluid (CSF) which regulates the exchange of substances between these two fluids through mechanisms that are not completely understood. Polyamines as spermine, spermidine and putrescine are produced by all cells and are present in the CSF. Interestingly, their levels are altered in some neuronal disorders as Alzheimer's and Parkinson's diseases, thus increasing the interest in their signalling in the central nervous system (CNS). Cadaverine, on the other hand, is synthetized by the intestinal microbiome, suggesting that the presence of this bacterial metabolite in the CSF requires that it is up taken to the CNS across brain barriers. We knew that polyamines are detected by the olfactory signalling cascade operating at the CP, but the receptor involved had not been identified. The zebrafish TAAR13c was the only receptor known to bind a polyamine-cadaverine. Thus, we searched for a human receptor with homology to TAAR13c and found that some human TAARs including TAAR1 showed great homology. Then, we confirmed the expression of TAAR1 mRNA and protein in a human cell line of the CP, and in human CP samples. Calcium imaging assays after TAAR1 knockdown in these cells with a specific siRNA against TAAR1 showed a consistent reduction in the responses of these cells to cadaverine and spermidine, but not to spermine, suggesting that TAAR1 is activated by cadaverine and spermidine, but not spermine.


Asunto(s)
Cadaverina/metabolismo , Calcio/metabolismo , Plexo Coroideo/citología , Receptores Acoplados a Proteínas G/metabolismo , Espermina/metabolismo , Células Cultivadas , Humanos , Receptores Acoplados a Proteínas G/genética
20.
Microorganisms ; 8(12)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321840

RESUMEN

Echovirus-30 (E-30) is a non-polio enterovirus responsible for meningitis outbreaks in children worldwide. To gain access to the central nervous system (CNS), E-30 first has to cross the blood-brain barrier (BBB) or the blood-cerebrospinal fluid barrier (BCSFB). E-30 may use lipid rafts of the host cells to interact with and to invade the BCSFB. To study enteroviral infection of the BCSFB, an established in vitro model based on human immortalized brain choroid plexus papilloma (HIBCPP) cells has been used. Here, we investigated the impact of E-30 infection on the protein content of the lipid rafts at the BCSFB in vitro. Mass spectrometry analysis following E-30 infection versus uninfected conditions revealed differential abundancy in proteins implicated in cellular adhesion, cytoskeleton remodeling, and endocytosis/vesicle budding. Further, we evaluated the blocking of endocytosis via clathrin/dynamin blocking and its consequences for E-30 induced barrier disruption. Interestingly, blocking of endocytosis had no impact on the capacity of E-30 to induce loss of barrier properties in HIBCPP cells. Altogether, these data highlight the impact of E-30 on HIBCPP cells microdomain as an important factor for host cell alteration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...