Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 74(8): 2667-2679, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36651631

RESUMEN

Plants exude secondary metabolites from the roots to shape the composition and function of their microbiome. Many of these compounds are known for their anti-microbial activities and play a role in plant immunity, such as the indole-derived phytoalexin camalexin. Here we studied the dynamics of camalexin synthesis and exudation upon interaction of Arabidopsis thaliana with the plant growth promoting bacteria Pseudomonas sp. CH267 or the bacterial pathogen Burkholderia glumae PG1. We show that while camalexin accumulation and exudation is more rapidly but transiently induced upon interaction with the growth promoting bacteria, the pathogen induces higher and more stable camalexin levels. By combination of experiments with cut shoots and roots, and grafting of wild-type plants with mutants in camalexin synthesis, we showed that while camalexin can be produced and released by both organs, in intact plants exuded camalexin originates in the shoots. We also reveal that the root specific CYP71A27 protein specifically affects the outcome of the interaction with the plant growth promoting bacteria and that its transcript levels are controlled by a shoot derived signal. In conclusion, camalexin synthesis seems to be controlled on a whole plant level and is coordinated between the shoots and the roots.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fitoalexinas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Indoles/metabolismo , Raíces de Plantas/metabolismo
2.
Plant Physiol ; 189(4): 2413-2431, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35522044

RESUMEN

Heterotrimeric G-proteins are signal transduction complexes that comprised three subunits, Gα, Gß, and Gγ, and are involved in many aspects of plant life. The noncanonical Gα subunit EXTRA LARGE G-PROTEIN2 (XLG2) mediates pathogen-associated molecular pattern (PAMP)-induced reactive oxygen species (ROS) generation and immunity downstream of pattern recognition receptors. A mutant of the chitin receptor component CHITIN ELICITOR RECEPTOR KINASE1 (CERK1), cerk1-4, maintains normal chitin signaling capacity but shows excessive cell death upon infection with powdery mildew fungi. We identified XLG2 mutants as suppressors of the cerk1-4 phenotype. Mutations in XLG2 complex partners ARABIDOPSIS Gß1 (AGB1) and Gγ1 (AGG1) have a partial cerk1-4 suppressor effect. Contrary to its role in PAMP-induced immunity, XLG2-mediated control of ROS production by RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD) is not critical for cerk1-4-associated cell death and hyperimmunity. The cerk1-4 phenotype is also independent of the co-receptor/adapter kinases BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and SUPPRESSOR OF BIR1 1 (SOBIR1), but requires the E3 ubiquitin ligase PLANT U-BOX 2 (PUB2). XLG2 localizes to both the cell periphery and nucleus, and the cerk1-4 cell death phenotype is mediated by the cell periphery pool of XLG2. Integrity of the XLG2 N-terminal domain, but not its phosphorylation, is essential for correct XLG2 localization and formation of the cerk1-4 phenotype. Our results support a model in which XLG2 acts downstream of an unknown cell surface receptor that activates an NADPH oxidase-independent cell death pathway in Arabidopsis (Arabidopsis thaliana).


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Subunidades beta de la Proteína de Unión al GTP , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Quitina/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Inmunidad de la Planta/genética , Especies Reactivas de Oxígeno/metabolismo
3.
F1000Res ; 92020.
Artículo en Inglés | MEDLINE | ID: mdl-32148778

RESUMEN

The last decade brought great progress in describing the repertoire of microbes associated with plants and identifying principles of their interactions. Metabolites exuded by plant roots have been considered candidates for the mechanisms by which plants shape their root microbiome. Here, we review the evidence for several plant metabolites affecting plant interaction with microbes belowground. We also discuss the development of new approaches to study the mechanisms of such interaction that will help to elucidate the metabolic networks in the rhizosphere.


Asunto(s)
Microbiota , Raíces de Plantas/microbiología , Plantas/química , Rizosfera , Microbiología del Suelo
4.
mBio ; 10(6)2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848283

RESUMEN

Fungal pathogens require the unfolded protein response (UPR) to maintain protein homeostasis of the endoplasmic reticulum (ER) during pathogenic development. In the corn smut fungus Ustilago maydis, pathogenic development is controlled by the a and b mating-type loci. The UPR is specifically activated after plant penetration and required for efficient secretion of effectors and suppression of the plant defense response. The interaction between the UPR regulator Cib1 and the central developmental regulator Clp1 modulates the pathogenic program and triggers fungal colonization of the host plant. By contrast, when activated before plant penetration, the UPR interferes with fungal virulence by reducing expression of bE and bW, the central regulators of pathogenic development encoded by the b mating-type locus. Here, we show that this inhibitory effect results from UPR-mediated suppression of the pheromone response pathway upstream of the b regulatory network. UPR activity prompts dephosphorylation of the pheromone-responsive mitogen-activated protein kinase (MAPK) Kpp2, reducing activity of the pheromone response factor Prf1 that regulates expression of bE and bW Deletion of the dual specificity phosphatase rok1 fully suppressed UPR-dependent inhibition of Kpp2 phosphorylation, formation of infectious filaments, and fungal virulence. Rok1 determines the activity of mating-type signaling pathways and thus the degree of fungal virulence. We propose that UPR-dependent regulation of Rok1 aligns ER physiology with fungal aggressiveness and effector gene expression during biotrophic growth of U. maydis in the host plant.IMPORTANCE The unfolded protein response (UPR) is crucial for endoplasmic reticulum (ER) homeostasis and disease development in fungal pathogens. In the plant-pathogenic fungus Ustilago maydis, the UPR supports fungal proliferation in planta and effector secretion for plant defense suppression. In this study, we uncovered that UPR activity, which is normally restricted to the biotrophic stage in planta, inhibits mating and the formation of infectious filaments by Rok1-dependent dephosphorylation of the pheromone responsive mitogen-activated protein kinase (MAPK) Kpp2. This observation is relevant for understanding how the fungal virulence program is regulated by cellular physiology. UPR-mediated control of mating-type signaling pathways predicts that effector gene expression and the virulence potential are controlled by ER stress levels.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Genes del Tipo Sexual de los Hongos , Transducción de Señal , Respuesta de Proteína Desplegada , Ustilago/fisiología , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Feromonas/metabolismo , Fosforilación , Enfermedades de las Plantas/microbiología , Ustilago/patogenicidad , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA