Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 39(5)2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35524714

RESUMEN

For billions of years, life has continuously adapted to dynamic physical conditions near the Earth's surface. Fossils and other preserved biosignatures in the paleontological record are the most direct evidence for reconstructing the broad historical contours of this adaptive interplay. However, biosignatures dating to Earth's earliest history are exceedingly rare. Here, we combine phylogenetic inference of primordial rhodopsin proteins with modeled spectral features of the Precambrian Earth environment to reconstruct the paleobiological history of this essential family of photoactive transmembrane proteins. Our results suggest that ancestral microbial rhodopsins likely acted as light-driven proton pumps and were spectrally tuned toward the absorption of green light, which would have enabled their hosts to occupy depths in a water column or biofilm where UV wavelengths were attenuated. Subsequent diversification of rhodopsin functions and peak absorption frequencies was enabled by the expansion of surface ecological niches induced by the accumulation of atmospheric oxygen. Inferred ancestors retain distinct associations between extant functions and peak absorption frequencies. Our findings suggest that novel information encoded by biomolecules can be used as "paleosensors" for conditions of ancient, inhabited niches of host organisms not represented elsewhere in the paleontological record. The coupling of functional diversification and spectral tuning of this taxonomically diverse protein family underscores the utility of rhodopsins as universal testbeds for inferring remotely detectable biosignatures on inhabited planetary bodies.


Asunto(s)
Rodopsina , Rodopsinas Microbianas , Planeta Tierra , Filogenia , Planetas , Rodopsina/genética , Rodopsinas Microbianas/genética
2.
Extremophiles ; 24(1): 31-41, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31463573

RESUMEN

Recent progress in extremophile biology, exploration of planetary bodies in the solar system, and the detection and characterization of extrasolar planets are leading to new insights in the field of astrobiology and possible distribution of life in the universe. Among the many extremophiles on Earth, the halophilic Archaea (Haloarchaea) are especially attractive models for astrobiology, being evolutionarily ancient and physiologically versatile, potentially surviving in a variety of planetary environments and with relevance for in situ life detection. Haloarchaea are polyextremophilic with tolerance of saturating salinity, anaerobic conditions, high levels of ultraviolet and ionizing radiation, subzero temperatures, desiccation, and toxic ions. Haloarchaea survive launches into Earth's stratosphere encountering conditions similar to those found on the surface of Mars. Studies of their unique proteins are revealing mechanisms permitting activity and function in high ionic strength, perchlorates, and subzero temperatures. Haloarchaea also produce spectacular blooms visible from space due to synthesis of red-orange isoprenoid carotenoids used for photoprotection and photorepair processes and purple retinal chromoproteins for phototrophy and phototaxis. Remote sensing using visible and infrared spectroscopy has shown that haloarchaeal pigments exhibit both a discernable peak of absorption and a reflective "green edge". Since the pigments produce remotely detectable features, they may influence the spectrum from an inhabited exoplanet imaged by a future large space-based telescope. In this review, we focus primarily on studies of two Haloarchaea, Halobacterium sp. NRC-1 and Halorubrum lacusprofundi.


Asunto(s)
Extremófilos , Exobiología , Halobacterium , Halorubrum , Tecnología de Sensores Remotos
3.
Astrobiology ; 18(6): 779-824, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29938538

RESUMEN

We introduce a Bayesian method for guiding future directions for detection of life on exoplanets. We describe empirical and theoretical work necessary to place constraints on the relevant likelihoods, including those emerging from better understanding stellar environment, planetary climate and geophysics, geochemical cycling, the universalities of physics and chemistry, the contingencies of evolutionary history, the properties of life as an emergent complex system, and the mechanisms driving the emergence of life. We provide examples for how the Bayesian formalism could guide future search strategies, including determining observations to prioritize or deciding between targeted searches or larger lower resolution surveys to generate ensemble statistics and address how a Bayesian methodology could constrain the prior probability of life with or without a positive detection. Key Words: Exoplanets-Biosignatures-Life detection-Bayesian analysis. Astrobiology 18, 779-824.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planetas , Teorema de Bayes , Origen de la Vida , Oxígeno/análisis
4.
Astrobiology ; 18(6): 619-629, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29741918

RESUMEN

The rapid rate of discoveries of exoplanets has expanded the scope of the science possible for the remote detection of life beyond Earth. The Exoplanet Biosignatures Workshop Without Walls (EBWWW) held in 2016 engaged the international scientific community across diverse scientific disciplines, to assess the state of the science and technology in the search for life on exoplanets, and to identify paths for progress. The workshop activities resulted in five major review papers, which provide (1) an encyclopedic review of known and proposed biosignatures and models used to ascertain them (Schwieterman et al., 2018 in this issue); (2) an in-depth review of O2 as a biosignature, rigorously examining the nuances of false positives and false negatives for evidence of life (Meadows et al., 2018 in this issue); (3) a Bayesian framework to comprehensively organize current understanding to quantify confidence in biosignature assessments (Catling et al., 2018 in this issue); (4) an extension of that Bayesian framework in anticipation of increasing planetary data and novel concepts of biosignatures (Walker et al., 2018 in this issue); and (5) a review of the upcoming telescope capabilities to characterize exoplanets and their environment (Fujii et al., 2018 in this issue). Because of the immense content of these review papers, this summary provides a guide to their complementary scope and highlights salient features. Strong themes that emerged from the workshop were that biosignatures must be interpreted in the context of their environment, and that frameworks must be developed to link diverse forms of scientific understanding of that context to quantify the likelihood that a biosignature has been observed. Models are needed to explore the parameter space where measurements will be widespread but sparse in detail. Given the technological prospects for large ground-based telescopes and space-based observatories, the detection of atmospheric signatures of a few potentially habitable planets may come before 2030. Key Words: Exoplanets-Biosignatures-Remote observation-Spectral imaging-Bayesian analysis. Astrobiology 18, 619-626.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planetas , Vida , Oxígeno/análisis
5.
Astrobiology ; 18(6): 630-662, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29746149

RESUMEN

We describe how environmental context can help determine whether oxygen (O2) detected in extrasolar planetary observations is more likely to have a biological source. Here we provide an in-depth, interdisciplinary example of O2 biosignature identification and observation, which serves as the prototype for the development of a general framework for biosignature assessment. Photosynthetically generated O2 is a potentially strong biosignature, and at high abundance, it was originally thought to be an unambiguous indicator for life. However, as a biosignature, O2 faces two major challenges: (1) it was only present at high abundance for a relatively short period of Earth's history and (2) we now know of several potential planetary mechanisms that can generate abundant O2 without life being present. Consequently, our ability to interpret both the presence and absence of O2 in an exoplanetary spectrum relies on understanding the environmental context. Here we examine the coevolution of life with the early Earth's environment to identify how the interplay of sources and sinks may have suppressed O2 release into the atmosphere for several billion years, producing a false negative for biologically generated O2. These studies suggest that planetary characteristics that may enhance false negatives should be considered when selecting targets for biosignature searches. We review the most recent knowledge of false positives for O2, planetary processes that may generate abundant atmospheric O2 without a biosphere. We provide examples of how future photometric, spectroscopic, and time-dependent observations of O2 and other aspects of the planetary environment can be used to rule out false positives and thereby increase our confidence that any observed O2 is indeed a biosignature. These insights will guide and inform the development of future exoplanet characterization missions. Key Words: Biosignatures-Oxygenic photosynthesis-Exoplanets-Planetary atmospheres. Astrobiology 18, 630-662.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Oxígeno/análisis , Planetas , Origen de la Vida , Fotosíntesis
6.
Astrobiology ; 18(6): 663-708, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29727196

RESUMEN

In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth's biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a comprehensive overview of our current understanding of potential exoplanet biosignatures, including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. We briefly review advances in assessing biosignature plausibility, including novel methods for determining chemical disequilibrium from remotely obtainable data and assessment tools for determining the minimum biomass required to maintain short-lived biogenic gases as atmospheric signatures. We focus particularly on advances made since the seminal review by Des Marais et al. The purpose of this work is not to propose new biosignature strategies, a goal left to companion articles in this series, but to review the current literature, draw meaningful connections between seemingly disparate areas, and clear the way for a path forward. Key Words: Exoplanets-Biosignatures-Habitability markers-Photosynthesis-Planetary surfaces-Atmospheres-Spectroscopy-Cryptic biospheres-False positives. Astrobiology 18, 663-708.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Origen de la Vida , Planetas , Gases/análisis , Modelos Teóricos
7.
Astrobiology ; 18(2): 133-189, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29431479

RESUMEN

Proxima Centauri b provides an unprecedented opportunity to understand the evolution and nature of terrestrial planets orbiting M dwarfs. Although Proxima Cen b orbits within its star's habitable zone, multiple plausible evolutionary paths could have generated different environments that may or may not be habitable. Here, we use 1-D coupled climate-photochemical models to generate self-consistent atmospheres for several evolutionary scenarios, including high-O2, high-CO2, and more Earth-like atmospheres, with both oxic and anoxic compositions. We show that these modeled environments can be habitable or uninhabitable at Proxima Cen b's position in the habitable zone. We use radiative transfer models to generate synthetic spectra and thermal phase curves for these simulated environments, and use instrument models to explore our ability to discriminate between possible planetary states. These results are applicable not only to Proxima Cen b but to other terrestrial planets orbiting M dwarfs. Thermal phase curves may provide the first constraint on the existence of an atmosphere. We find that James Webb Space Telescope (JWST) observations longward of 10 µm could characterize atmospheric heat transport and molecular composition. Detection of ocean glint is unlikely with JWST but may be within the reach of larger-aperture telescopes. Direct imaging spectra may detect O4 absorption, which is diagnostic of massive water loss and O2 retention, rather than a photosynthetic biosphere. Similarly, strong CO2 and CO bands at wavelengths shortward of 2.5 µm would indicate a CO2-dominated atmosphere. If the planet is habitable and volatile-rich, direct imaging will be the best means of detecting habitability. Earth-like planets with microbial biospheres may be identified by the presence of CH4-which has a longer atmospheric lifetime under Proxima Centauri's incident UV-and either photosynthetically produced O2 or a hydrocarbon haze layer. Key Words: Planetary habitability and biosignatures-Planetary atmospheres-Exoplanets-Spectroscopic biosignatures-Planetary science-Proxima Centauri b. Astrobiology 18, 133-189.


Asunto(s)
Evolución Biológica , Exobiología/métodos , Medio Ambiente Extraterrestre , Modelos Biológicos , Planetas , Atmósfera/química , Dióxido de Carbono/química , Monóxido de Carbono/química , Clima , Evolución Planetaria , Exobiología/instrumentación , Calor , Océanos y Mares , Efectos de la Radiación , Telescopios , Agua/química
8.
Astrobiology ; 17(10): 1009-1021, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29048222

RESUMEN

We conducted an analog sampling expedition under simulated mission constraints to areas dominated by basaltic tephra of the Eldfell and Fimmvörðuháls lava fields (Iceland). Sites were selected to be "homogeneous" at a coarse remote sensing resolution (10-100 m) in apparent color, morphology, moisture, and grain size, with best-effort realism in numbers of locations and replicates. Three different biomarker assays (counting of nucleic-acid-stained cells via fluorescent microscopy, a luciferin/luciferase assay for adenosine triphosphate, and quantitative polymerase chain reaction (qPCR) to detect DNA associated with bacteria, archaea, and fungi) were characterized at four nested spatial scales (1 m, 10 m, 100 m, and >1 km) by using five common metrics for sample site representativeness (sample mean variance, group F tests, pairwise t tests, and the distribution-free rank sum H and u tests). Correlations between all assays were characterized with Spearman's rank test. The bioluminescence assay showed the most variance across the sites, followed by qPCR for bacterial and archaeal DNA; these results could not be considered representative at the finest resolution tested (1 m). Cell concentration and fungal DNA also had significant local variation, but they were homogeneous over scales of >1 km. These results show that the selection of life detection assays and the number, distribution, and location of sampling sites in a low biomass environment with limited a priori characterization can yield both contrasting and complementary results, and that their interdependence must be given due consideration to maximize science return in future biomarker sampling expeditions. Key Words: Astrobiology-Biodiversity-Microbiology-Iceland-Planetary exploration-Mars mission simulation-Biomarker. Astrobiology 17, 1009-1021.


Asunto(s)
Exobiología/métodos , Medio Ambiente Extraterrestre , Vida , Marte , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biomarcadores/análisis , ADN de Archaea/aislamiento & purificación , ADN Bacteriano/aislamiento & purificación , ADN de Hongos/aislamiento & purificación , Hongos/genética , Hongos/aislamiento & purificación , Islandia , Reacción en Cadena en Tiempo Real de la Polimerasa , Vuelo Espacial , Simulación del Espacio
9.
Astrobiology ; 17(4): 287-297, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28418704

RESUMEN

Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth-oxygen (O2), ozone (O3), and methane (CH4). We suggest that the canonical O2-CH4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ∼4.5-billion-year history and that in general atmospheric O2/O3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ∼500 million years. We further suggest that detecting atmospheric CH4 would have been problematic for most of the last ∼2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures. Key Words: Biosignatures-Oxygen-Methane-Ozone-Exoplanets-Planetary habitability. Astrobiology 17, 287-297.


Asunto(s)
Planeta Tierra , Exobiología , Medio Ambiente Extraterrestre , Océanos y Mares , Planetas , Atmósfera/química , Metano/análisis , Oxígeno/análisis , Ozono/análisis , Análisis Espectral
10.
Astrophys J Lett ; Volume 819(No 1)2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30147857

RESUMEN

O2 and O3 have been long considered the most robust individual biosignature gases in a planetary atmosphere, yet multiple mechanisms that may produce them in the absence of life have been described. However, these abiotic planetary mechanisms modify the environment in potentially identifiable ways. Here we briefly discuss two of the most detectable spectral discriminants for abiotic O2/O3: CO and O4. We produce the first explicit self-consistent simulations of these spectral discriminants as they may be seen by James Webb Space Telescope (JWST). If JWST-NIRISS and/or NIRSpec observe CO (2.35, 4.6 µm) in conjunction with CO2 (1.6, 2.0, 4.3 µm) in the transmission spectrum of a terrestrial planet it could indicate robust CO2 photolysis and suggest that a future detection of O2 or O3 might not be biogenic. Strong O4 bands seen in transmission at 1.06 and 1.27 µm could be diagnostic of a post-runaway O2-dominated atmosphere from massive H-escape. We find that for these false positive scenarios, CO at 2.35 µm, CO2 at 2.0 and 4.3 µm, and O4 at 1.27 µm are all stronger features in transmission than O2/O3 and could be detected with S/Ns ≳ 3 for an Earth-size planet orbiting a nearby M dwarf star with as few as 10 transits, assuming photon-limited noise. O4 bands could also be sought in UV/VIS/NIR reflected light (at 0.345, 0.36, 0.38, 0.445, 0.475, 0.53, 0.57, 0.63, 1.06, and 1.27 µm) by a next generation direct-imaging telescope such as LUVOIR/HDST or HabEx and would indicate an oxygen atmosphere too massive to be biologically produced.

11.
Astrobiology ; 15(5): 341-61, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25941875

RESUMEN

Previous work on possible surface reflectance biosignatures for Earth-like planets has typically focused on analogues to spectral features produced by photosynthetic organisms on Earth, such as the vegetation red edge. Although oxygenic photosynthesis, facilitated by pigments evolved to capture photons, is the dominant metabolism on our planet, pigmentation has evolved for multiple purposes to adapt organisms to their environment. We present an interdisciplinary study of the diversity and detectability of nonphotosynthetic pigments as biosignatures, which includes a description of environments that host nonphotosynthetic biologically pigmented surfaces, and a lab-based experimental analysis of the spectral and broadband color diversity of pigmented organisms on Earth. We test the utility of broadband color to distinguish between Earth-like planets with significant coverage of nonphotosynthetic pigments and those with photosynthetic or nonbiological surfaces, using both 1-D and 3-D spectral models. We demonstrate that, given sufficient surface coverage, nonphotosynthetic pigments could significantly impact the disk-averaged spectrum of a planet. However, we find that due to the possible diversity of organisms and environments, and the confounding effects of the atmosphere and clouds, determination of substantial coverage by biologically produced pigments would be difficult with broadband colors alone and would likely require spectrally resolved data.


Asunto(s)
Exobiología , Fotosíntesis , Pigmentos Biológicos/metabolismo , Bacterias/metabolismo , Color , Bosques , Modelos Teóricos , Océanos y Mares , Planetas , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...