Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(10): 4406-4415, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30765532

RESUMEN

A major challenge in evolutionary biology is to understand how complex traits of multiple functions have diversified and codiversified across interacting lineages and geographic ranges. We evaluate intra- and interspecific variation in floral scent, which is a complex trait of documented importance for mutualistic and antagonistic interactions between plants, pollinators, and herbivores. We performed a large-scale, phylogenetically structured study of an entire plant genus (Lithophragma, Saxifragaceae), of which several species are coevolving with specialized pollinating floral parasites of the moth genus Greya (Prodoxidae). We sampled 94 Lithophragma populations distributed across all 12 recognized Lithophragma species and subspecies, and four populations of related saxifragaceous species. Our results reveal an unusually high diversity of floral volatiles among populations, species, and clades within the genus. Moreover, we found unexpectedly major changes at each of these levels in the biosynthetic pathways used by local populations in their floral scents. Finally, we detected significant, but variable, genus- and species-level patterns of ecological convergence in the floral scent signal, including an impact of the presence and absence of two pollinating Greya moth species. We propose that one potential key to understanding floral scent variation in this hypervariable genus is its geographically diverse interactions with the obligate specialized Greya moths and, in some species and sites, more generalized copollinators.


Asunto(s)
Flores/metabolismo , Saxifragaceae/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Filogeografía , Saxifragaceae/clasificación , Especificidad de la Especie
2.
Am Nat ; 190(2): 171-184, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28731801

RESUMEN

Closely related species often have similar traits and sometimes interact with the same species. A crucial problem in evolutionary ecology is therefore to understand how coevolving species diverge when they interact with a set of closely related species from another lineage rather than with a single species. We evaluated geographic differences in the floral morphology of all woodland star plant species (Lithophragma, Saxifragaceae) that are pollinated by Greya (Prodoxidae) moths. Flowers of each woodland star species differed depending on whether plants interact locally with one, two, or no pollinating moth species. Plants of one species grown in six different environments showed few differences in floral traits, suggesting that the geographic differences are not due significantly to trait plasticity. Greya moth populations also showed significant geographic divergence in morphology, depending on the local host and on whether the moth species co-occurred locally. Divergence in the plants and the moths involved shifts in combinations of partially correlated traits, rather than any one trait. The results indicate that the geographic mosaic of coevolution can be amplified as coevolving lineages diversify into separate species and come together in different combinations in different ecosystems.


Asunto(s)
Evolución Biológica , Mariposas Nocturnas , Plantas , Animales , Flores , Polinización , Saxifragaceae
3.
J Chem Ecol ; 40(9): 955-65, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25236381

RESUMEN

Chemical defenses, repellents, and attractants are important shapers of species interactions. Chemical attractants could contribute to the divergence of coevolving plant-insect interactions, if pollinators are especially responsive to signals from the local plant species. We experimentally investigated patterns of daily floral scent production in three Lithophragma species (Saxifragaceae) that are geographically isolated and tested how scent divergence affects attraction of their major pollinator-the floral parasitic moth Greya politella (Prodoxidae). These moths oviposit through the corolla while simultaneously pollinating the flower with pollen adhering to the abdomen. The complex and species-specific floral scent profiles were emitted in higher amounts during the day, when these day-flying moths are active. There was minimal divergence found in petal color, which is another potential floral attractant. Female moths responded most strongly to scent from their local host species in olfactometer bioassays, and were more likely to oviposit in, and thereby pollinate, their local host species in no-choice trials. The results suggest that floral scent is an important attractant in this interaction. Local specialization in the pollinator response to a highly specific plant chemistry, thus, has the potential to contribute importantly to patterns of interaction specificity among coevolving plants and highly specialized pollinators.


Asunto(s)
Evolución Biológica , Mariposas Nocturnas/fisiología , Odorantes/análisis , Percepción Olfatoria , Oviposición , Saxifragaceae/fisiología , Animales , Quimiotaxis , Ritmo Circadiano , Femenino , Flores/fisiología , Olfatometría , Polinización , Especificidad de la Especie , Espectrofotometría , Temperamento
4.
Proc Natl Acad Sci U S A ; 110(28): 11487-92, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23801764

RESUMEN

Mutualisms between species are interactions in which reciprocal exploitation results in outcomes that are mutually beneficial. This reciprocal exploitation is evident in the more than a thousand plant species that are pollinated exclusively by insects specialized to lay their eggs in the flowers they pollinate. By pollinating each flower in which she lays eggs, an insect guarantees that her larval offspring have developing seeds on which to feed, whereas the plant gains a specialized pollinator at the cost of some seeds. These mutualisms are often reciprocally obligate, potentially driving not only ongoing coadaptation but also diversification. The lack of known intermediate stages in most of these mutualisms, however, makes it difficult to understand whether these interactions could have begun to diversify even before they became reciprocally obligate. Experimental studies of the incompletely obligate interactions between woodland star (Lithophragma; Saxifragaceae) plants and their pollinating floral parasites in the moth genus Greya (Prodoxidae) show that, as these lineages have diversified, the moths and plants have evolved in ways that maintain effective oviposition and pollination. Experimental assessment of pollination in divergent species and quantitative evaluation of time-lapse photographic sequences of pollination viewed on surgically manipulated flowers show that various combinations of traits are possible for maintaining the mutualism. The results suggest that at least some forms of mutualism can persist and even diversify when the interaction is not reciprocally obligate.


Asunto(s)
Biodiversidad , Evolución Biológica , Insectos/genética , Adaptación Fisiológica , Animales , Insectos/clasificación , Insectos/fisiología , Polinización
5.
Ann Bot ; 111(4): 539-50, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365407

RESUMEN

BACKGROUNDS AND AIMS: A current challenge in coevolutionary biology is to understand how suites of traits vary as coevolving lineages diverge. Floral scent is often a complex, variable trait that attracts a suite of generalized pollinators, but may be highly specific in plants specialized on attracting coevolved pollinating floral parasites. In this study, floral scent variation was investigated in four species of woodland stars (Lithophragma spp.) that share the same major pollinator (the moth Greya politella, a floral parasite). Three specific hypotheses were tested: (1) sharing the same specific major pollinator favours conservation of floral scent among close relatives; (2) selection favours 'private channels' of rare compounds particularly aimed at the specialist pollinator; or (3) selection from rare, less-specialized co-pollinators mitigates the conservation of floral scent and occurrence of private channels. METHODS: Dynamic headspace sampling and solid-phase microextraction were applied to greenhouse-grown plants from a common garden as well as to field samples from natural populations in a series of experiments aiming to disentangle the genetic and environmental basis of floral scent variation. KEY RESULTS: Striking floral scent divergence was discovered among species. Only one of 69 compounds was shared among all four species. Scent variation was largely genetically based, because it was consistent across field and greenhouse treatments, and was not affected by visits from the pollinating floral parasite. CONCLUSIONS: The strong divergence in floral scents among Lithophragma species contrasts with the pattern of conserved floral scent composition found in other plant genera involved in mutualisms with pollinating floral parasites. Unlike some of these other obligate pollination mutualisms, Lithophragma plants in some populations are occasionally visited by generalist pollinators from other insect taxa. This additional complexity may contribute to the diversification in floral scent found among the Lithophragma species pollinated by Greya moths.


Asunto(s)
Mariposas Nocturnas/fisiología , Feromonas/análisis , Feromonas/fisiología , Polinización , Saxifragaceae/química , Saxifragaceae/fisiología , Animales , Flores/fisiología , Interacciones Huésped-Parásitos/genética , Feromonas/genética , Saxifragaceae/parasitología , Simbiosis , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA