Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 657: 124133, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38642620

RESUMEN

Residence time distribution (RTD) method has been widely used in the pharmaceutical manufacturing for understanding powder dynamics within unit operations and continuous integrated manufacturing lines. The dynamics thus captured is then used to develop predictive models for unit operations and important RTD-based applications ensuring product quality assurance. Despite thorough efforts in tracer selection, data acquisition, and calibration model development to obtain tracer concentration profiles for RTD studies, there can exist significant noise in these profiles. This noise can make it challenging to identify the underlying signal and get a representative RTD of the system under study. Such concerns have previously indicated the importance of noise handling for RTD measurements in literature. However, the literature does not provide sufficient information on noise handling or data treatment strategies for RTD studies. To this end, we investigate the impact of varying levels of noise using different tracers on measurement of RTD profile and its applications. We quantify the impact of different denoising methods (time and frequency averaging methods). Through this investigation, we see that Savitsky Golay filtering turns out to a good method for denoising RTD profiles despite varying noise levels. The investigation is performed such that the key features of the RTD profile (which are important for RTD based applications) are preserved. Subsequently, we also investigate the impact of denoising on RTD-based applications such as out-of-specification (OOS) analysis and RTD modeling. The results show that the degree of noise levels considered in this work do not significantly impact the RTD-based applications.

2.
Int J Pharm ; 634: 122653, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36716830

RESUMEN

Residence time distribution (RTD) has been widely applied across various fields of chemical engineering, including pharmaceutical manufacturing, for applications such as material traceability, quality assurance, system health monitoring, and fault detection. Determination of a representative RTD, in principle, requires an accurate process analytical technology (PAT) procedure capturing the entire range of tracer concentrations from zero to maximum. Such a wide concentration range creates at least two problems: i) decreased accuracy of the model across the entire range of concentrations, relating to limit of quantification, and ii) ambiguity associated with the detection of the tracer for low concentration levels, relating to limit of detection (LOD). These problems affect not only the RTD profile itself, but also RTD-based applications, which can potentially lead to erroneous conclusions. This article seeks to minimize the impact of these problems by understanding the relative importance of different features of RTD on the detection of out-of-specification (OOS) products. In this work, the RTD obtained experimentally was truncated at different levels, to investigate the impact of the truncation of RTD on funnel plots for OOS detection. The main finding is that the tail of the RTD can be truncated with no loss of accuracy in the determination of exclusion intervals. This enables the manufacturing scientist to focus entirely on the peak region, maximizing the accuracy of chemometric models.


Asunto(s)
Quimiometría , Tecnología Farmacéutica , Tecnología Farmacéutica/métodos , Muestreo para la Garantía de la Calidad de Lotes , Límite de Detección
3.
Int J Pharm ; 611: 121313, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34822965

RESUMEN

Residence time distribution (RTD) models were developed to track raw material lots and investigate batch transitions in a continuous manufacturing system. Two raw materials with similar physical properties (granular metformin and lactose) were identified via Principal Component Analysis (PCA) from a library of bulk material properties and used to simulate the switching of lots during production. In-line near-infrared (NIR) spectra were collected with the powder flowing through a chute in a continuous manufacturing system to monitor metformin and lactose concentration in step-change experiments with Partial Least Squares (PLS) models. RTD provided an understanding of raw material propagation through the continuous manufacturing system. Transition times between raw material changes were identified using the results of two multivariate approaches PLS and PCA. The methodology was implemented to discriminate the transition zone in a raw material change, contributing to design control strategies for acceptance and diverting mechanisms.


Asunto(s)
Preparaciones Farmacéuticas
4.
Int J Pharm ; 610: 121248, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34748808

RESUMEN

While continuous manufacturing (CM) of pharmaceutical solid-based drug products has been shown to be advantageous for improving the product quality and process efficiency in alignment with FDA's support of the quality-by-design paradigm (Lee, 2015; Ierapetritou et al., 2016; Plumb, 2005; Schaber, 2011), it is critical to enable full utilization of CM technology for robust production and commercialization (Schaber, 2011; Byrn, 2015). To do so, an important prerequisite is to obtain a detailed understanding of overall process characteristics to develop cost-effective and accurate predictive models for unit operations and process flowsheets. These models are utilized to predict product quality and maintain desired manufacturing efficiency (Ierapetritou et al., 2016). Residence time distribution (RTD) has been a widely used tool to characterize the extent of mixing in pharmaceutical unit operations (Vanhoorne, 2020; Rogers and Ierapetritou, 2015; Tezyk et al., 2015) and manufacturing lines and develop computationally cheap predictive models. These models developed using RTD have been demonstrated to be crucial for various flowsheet applications (Kruisz, 2017; Martinetz, 2018; Tian, 2021). Though extensively used in the literature (Gao et al., 2012), the implementation, execution, evaluation, and assessment of RTD studies has not been standardized by regulatory agencies and can thus lead to ambiguity regarding their accurate implementation. To address this issue and subsequently prevent unforeseen errors in RTD implementation, the presented article aims to aid in developing standardized guidelines through a detailed review and critical discussion of RTD studies in the pharmaceutical manufacturing literature. The review article is divided into two main sections - 1) determination of RTD including different steps for RTD evaluation including experimental approach, data acquisition and pre-treatment, RTD modeling, and RTD metrics and, 2) applications of RTD for solid dose manufacturing. Critical considerations, pertaining to the limitations of RTDs for solid dose manufacturing, are also examined along with a perspective discussion of future avenues of improvement.


Asunto(s)
Preparaciones Farmacéuticas , Tecnología Farmacéutica , Excipientes
5.
J Pharm Biomed Anal ; 180: 113054, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31881395

RESUMEN

The challenges in transferring and executing a near-infrared (NIR) spectroscopic method for croscarmellose (disintegrant) in binary blends for a continuous manufacturing (CM) process are presented. This work demonstrates the development of a NIR calibration model and its use to determine the blending parameters needed for binary blends at a development plant and later used to predict CM process blends. The calibration models were developed with laboratory scale powder blends ranging from 4.32%-64.77 (%w/w) of croscarmellose and evaluated using independent test blends. The selected model was then transferred to the continuous manufacturing development site to determine the croscarmellose concentration for spectra collected in real-time. A total of 18 development plant runs were monitored using an in-line NIR spectrometer, however, these spectra showed high baseline variations. The baseline variations were caused by the poor flow of the material within the system. An inconsistent bias which varied from 2.51 to 14.95 (%w/w) was observed in the predictions of croscarmellose. High baseline spectra were eliminated and the bias was significantly reduced by 42-51%. Experiments at lower flow rate speeds did not show significant changes in baseline and bias values showed more consistency. The calibration model was then transferred to two NIR spectrometers installed at-line at the commercial site, where powder samples were collected at the beginning middle and end of each CM plant run. The NIR calibration model predicted disintegrant concentration from the powder samples. Results showed the bias values for the NIR (1) varied from 0.74 to 2.21 (%w/w) and NIR (2) from 0.28 to 3.39 (%w/w). Average concentration values for both equipments were very close to the reference concentration values of 43.18 and 50.98 (%w/w). The study showed the model was able to identify flow issues, identified as baseline shifts, that could be used to alert to problems in the powder bed that may warrant diversion from a production line. These powder flow problems such as air gaps and inconsistent powder bed height affected the NIR spectra collected at the development plant and provided results with high bias. A lower bias was obtained in samples collected at line after blending.


Asunto(s)
Espectroscopía Infrarroja Corta/métodos , Espectroscopía Infrarroja Corta/normas , Tecnología Farmacéutica/métodos , Calibración , Carboximetilcelulosa de Sodio/química , Celulosa/química , Química Farmacéutica , Composición de Medicamentos , Excipientes/química , Polvos , Tecnología Farmacéutica/instrumentación , Humectabilidad
6.
Int J Pharm ; 575: 118727, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31626923

RESUMEN

This paper provides a method for prediction of weight variability of tablets made in rotary tablet presses as a function of material attributes and processing parameters. The goal was to be able to predict whether or not a formulation is suitable for direct compaction continuous manufacturing using the tablet weight variability as a criterion. The work focused on identifying the significant factors affecting the weight variability in tablets, within the design space studied. A wide range of blends with different powder properties were prepared. It was shown that among powder properties, cohesion, bulk density, and particle size were the most significant and sufficient material attributes to explain tablet weight variability. A response surface model was built and validated with three different blends. The model is not formulation dependent and can be expanded to include other blend properties or processing parameters effects.


Asunto(s)
Modelos Teóricos , Comprimidos/química , Tecnología Farmacéutica/métodos , Polvos/química
7.
Int J Pharm ; 560: 322-333, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30763679

RESUMEN

Blend uniformity was monitored throughout a continuous manufacturing (CM) process by near infrared (NIR) spectroscopic measurements of flowing blends and compared to the drug concentration in the tablets. The NIR spectra were obtained through the chute after the blender and within the feed frame, while transmission spectra were obtained for the tablets. The CM process was performed with semi-fine acetaminophen blends at 10.0% (w/w). The blender was operated at 250 RPM, for best performance, and 106 and 495 rpm where a lower mixing efficiency was expected. The variation in blender RPM increased the variation in drug concentration at the chute but not at the feed frame. Statistical results show that the drug concentration of tablets can be predicted, with great accuracy, from blends within the feed frame. This study demonstrated a mixing effect within the feed frame, which contribute to a 60% decrease in the relative standard deviation of the drug concentration, when compared to the chute. Variographic analysis showed that the minimum sampling and analytical error was five times less in the feed frame than the chute. This study demonstrates that the feed frame is an ideal location for monitoring the drug concentration of powder blends for CM processes.


Asunto(s)
Acetaminofén/administración & dosificación , Excipientes/química , Espectroscopía Infrarroja Corta/métodos , Tecnología Farmacéutica/métodos , Acetaminofén/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Polvos , Reproducibilidad de los Resultados , Comprimidos
8.
Int J Pharm ; 478(2): 447-55, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25475016

RESUMEN

The improvements in the flow and packing of fine pharmaceutical powder blends due to dry coating of micronized acetaminophen (mAPAP, ∼11µm), a model poorly flowing drug, are quantified. Poor flow and packing density of fine excipients (∼20µm) allowed testing the hypothesis that dry coating of cohesive API may counteract poor flow and packing of fine pharmaceutical powder blends. Further, fine excipients could improve compaction and reduce segregation tendency. It was found that flow function coefficient (FFC) and bulk density enhancements for 10%, 30%, and 60% (w/w), API loading blends with dry coated API are significantly higher than those without coated silica. At the highest API loading, for which coarser excipients were also used as reference, the flow and packing of dry coated mAPAP blends were significantly increased regardless of the excipient particle size, exceeding those of a well compacting excipient, Avicel 102. In addition, tensile strength of tablets with fine excipients was significantly higher, indicating improved compactibility. These results show for the first time that dry coating of fine, cohesive API powder leads to significantly improved flow and packing of high API loading blends consisting of fine excipients, while achieving improved tablet compactibility, suggesting suitability for direct compaction.


Asunto(s)
Composición de Medicamentos/métodos , Excipientes/química , Polvos/química , Comprimidos/química , Acetaminofén/química , Celulosa/química , Lactosa/química , Reología , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...