Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(15): 155101, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37897764

RESUMEN

Anisotropic electron heating during electron-only magnetic reconnection with a large guide magnetic field is directly measured in a laboratory plasma through in situ measurements of electron velocity distribution functions. Electron heating preferentially parallel to the magnetic field is localized to one separatrix, and anisotropies of 1.5 are measured. The mechanism for electron energization is identified as the parallel reconnection electric field because of the anisotropic nature of the heating and spatial localization. These characteristics are reproduced in a 2D particle-in-cell simulation and are also consistent with numerous magnetosheath observations. A measured increase in the perpendicular temperature along both separatrices is not reproduced by our 2D simulations. This work has implications for energy partition studies in magnetosheath and laboratory reconnection.

2.
Rev Sci Instrum ; 94(2): 023501, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859025

RESUMEN

A multi-dimensional incoherent Thomson scattering diagnostic system capable of measuring electron temperature anisotropies at the level of the electron velocity distribution function (EVDF) is implemented on the PHAse Space MApping facility to investigate electron energization mechanisms during magnetic reconnection. This system incorporates two injection paths (perpendicular and parallel to the axial magnetic field) and two collection paths, providing four independent EVDF measurements along four velocity space directions. For strongly magnetized electrons, a 3D EVDF comprised of two characteristic electron temperatures perpendicular and parallel to the local magnetic field line is reconstructed from the four measured EVDFs. Validation of isotropic electrons in a single magnetic flux rope and a steady-state helicon plasma is presented.

3.
Phys Rev Lett ; 128(2): 025002, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35089758

RESUMEN

Non-Maxwellian electron velocity distribution functions composed of a warm bulk population and a cold beam are directly measured during electron-only reconnection with a strong out-of-plane (guide) magnetic field in a laboratory plasma. Electron heating is localized to the separatrix, and the electron temperature increases continuously along the separatrix. The measured gain in enthalpy flux is 70% of the incoming Poynting flux. The electron beams are oppositely directed on either side of the X point, and their velocities are comparable to, and scale with, the electron Alfvén speed. Particle-in-cell simulations are consistent with the measurements. The experimental results are consistent with, and go beyond, recent observations in the magnetosheath.

4.
Rev Sci Instrum ; 92(3): 033102, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33820086

RESUMEN

A new incoherent Thomson scattering system measures the evolution of electron velocity distribution functions perpendicular and parallel to the ambient magnetic field during kinking of a single flux rope and merging of two flux ropes through magnetic reconnection. The Thomson scattering system provides sub-millimeter spatial resolution, sufficient to diagnose the several millimeters sized magnetic reconnection electron diffusion region in the PHAse Space MAppgin experiment. Due to the relatively modest plasma density ∼1019 m-3 and electron temperature ∼1 eV, stray light suppression is critical for these measurements. Two volume Bragg gratings are used in series as a notch filter with a spectral bandwidth <0.1 nm in the collection branch. A CCD with a Gen III intensifier with peak quantum efficiency >47% is used as the detector in a 1.3 m spectrometer. Preliminary results of gun plasma electron temperature will be reported and compared with measurements obtained from a triple Langmuir probe.

5.
Rev Sci Instrum ; 89(10): 10C113, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399757

RESUMEN

Iodine is an attractive propellant for next generation ion thrusters. Laser induced fluorescence (LIF) is widely used with other propellant species as a non-perturbative technique for measuring flow for thruster prediction models. We apply LIF methods recently demonstrated for singly-ionized iodine to a magnetized plasma environment similar to those found in ion thrusters and in magnetically confined laboratory plasmas. We demonstrate the feasibility of remotely determining the local magnetic field from the Zeeman effect-split spectrum of I+.

6.
Rev Sci Instrum ; 89(10): 10D127, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399791

RESUMEN

We add a collection path obscuration to a confocal telescope and confirm theoretical predictions of significant improvement in the longitudinal spatial localization. The improvements of spatial localization permitted an extension of the confocal telescope's focal length from 150 mm to 500 mm. At this longer focal length, millimeter-scale spatial localization is confirmed by comparing radial profiles of metastable state density obtained via confocal and conventional optical arrangements in a helicon source. The long focal length arrangement enables the measurement of argon neutral velocity distribution functions in the conventionally inaccessible region under a helicon source antenna.

7.
Rev Sci Instrum ; 88(10): 103506, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29092491

RESUMEN

We present measurements of ion velocity distributions obtained by laser induced fluorescence (LIF) using a single viewport in an argon plasma. A patent pending design, which we refer to as the confocal fluorescence telescope, combines large objective lenses with a large central obscuration and a spatial filter to achieve high spatial localization along the laser injection direction. Models of the injection and collection optics of the two assemblies are used to provide a theoretical estimate of the spatial localization of the confocal arrangement, which is taken to be the full width at half maximum of the spatial optical response. The new design achieves approximately 1.4 mm localization at a focal length of 148.7 mm, improving on previously published designs by an order of magnitude and approaching the localization achieved by the conventional method. The confocal method, however, does so without requiring a pair of separated, perpendicular optical paths. The confocal technique therefore eases the two window access requirement of the conventional method, extending the application of LIF to experiments where conventional LIF measurements have been impossible or difficult, or where multiple viewports are scarce.

8.
Rev Sci Instrum ; 87(1): 013505, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26827319

RESUMEN

Here we describe a novel infrared laser-induced fluorescence scheme for the 1s2 state of Ar-I using an 841.052 nm (vacuum) Sacher tunable diode laser oscillator and compare it to an established 667.913 nm (vacuum) 1s4-pumping Ar-I LIF scheme using a master oscillator power amplifier laser [A. M. Keesee et al. Rev. Sci. Instrum. 75, 4091 (2004)]. The novel scheme exhibits a significantly greater signal-to-noise ratio for a given injected laser power than the established scheme. We argue that this is caused by less intense spontaneous Ar-I radiation near the LIF emission wavelength for the 1s2 scheme as compared to the 1s4 scheme. In addition we present an updated iodine cell spectrum around the 1s4 LIF scheme pump wavelength.

9.
Earth Space Sci ; 2(2): 39-46, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27981070

RESUMEN

Ion temperatures as a function of the x and y axes in the geocentric solar magnetospheric (GSM) coordinate system and time are available for 76 geomagnetic storms that occurred during the period July 2008 to December 2013 on CDAWeb. The method for mapping energetic neutral atom data from the Two Wide-angle Imaging Spectrometers (TWINS) mission to the GSM equatorial plane and subsequent ion temperature calculation are described here. The ion temperatures are a measure of the average thermal energy of the bulk ion population in the 1-40 keV energy range. These temperatures are useful for studies of ion dynamics, for placing in situ measurements in a global context, and for establishing boundary conditions for models of the inner magnetosphere and the plasma sheet.

10.
Rev Sci Instrum ; 83(2): 023508, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22380092

RESUMEN

We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, T(e) ≈ 4 eV and n ≈ 5 × 10(11) cm(-3)). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 10(9) cm(-3) to 1 × 10(13) cm(-3) and target species temperatures less than 20 eV.

11.
Rev Sci Instrum ; 81(10): 10D704, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21033897

RESUMEN

Laser-induced-fluorescence (LIF) is used to measure the density of helium atoms in a helicon plasma source. For a pump wavelength of 587.725 nm (vacuum) and laser injection along the magnetic field, the LIF signal exhibits a signal decrease at the Doppler shifted central wavelength. The drop in signal results from the finite optical depth of the plasma and the magnitude of the decrease is proportional to the density of excited state neutral atoms. Using Langmuir probe measurements of plasma density and electron temperature and a collisional-radiative model, the absolute ground state neutral density is calculated from the optical depth measurements. Optimal plasma performance, i.e., the largest neutral depletion on the axis of the system, is observed for antenna frequencies of 13.0 and 13.5 MHz and magnetic field strengths of 550-600 G.

12.
Rev Sci Instrum ; 79(10): 10E725, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19044542

RESUMEN

A compact and portable 300 GHz collective scattering diagnostic employing a homodyne detection scheme has been constructed and installed on the hot helicon experiment (HELIX). Verification of the homodyne detection scheme was accomplished with a rotating grooved aluminum wheel to Doppler shift the interaction beam. The HELIX chamber geometry and collection optics allow measurement of scattering angles ranging from 60 degrees to 90 degrees. Artificially driven ion-acoustic waves are also being investigated as a proof-of-principle test for the diagnostic system.

13.
Phys Rev Lett ; 95(2): 025004, 2005 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-16090693

RESUMEN

With nonperturbative laser-induced fluorescence measurements of ion flow, we confirm numerical simulations of spontaneous electric double-layer (DL) formation in a current-free expanding plasma. Measurements in two different experiments confirm that the DL is localized to the region of rapidly diverging magnetic field. The measurements indicate that the trapped ion population is a single Maxwellian, that the spatial gradient of the energy of ions accelerated through the DL matches the magnetic field gradient, and that DL formation is triggered when the ion-neutral collisional mean-free path exceeds the magnetic field gradient scale length.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(2 Pt 2): 026306, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15783418

RESUMEN

The temporal evolution of perturbations in stratified flow with inhomogeneous shear is examined analytically by an extension of the nonmodal approach to flows with inhomogeneous shear. The solutions of the equations that govern the linear evolution and the weak nonlinear evolution of perturbations of the stream function for stratified flow with monotonic inhomogeneous shear are obtained. It is shown that stabilization of perturbations arises from nonmodal effects due to flow shear. Conditions at which these nonmodal effects may be strong enough to stabilize the Rayleigh-Taylor instability are presented. These analytical results are also compared to numerical simulations of the governing equations performed by Benilov, Naulin, and Rasmussen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...