Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38543704

RESUMEN

The continuous emergence of SARS-CoV-2 variants caused the persistence of the COVID-19 epidemic and challenged the effectiveness of the existing vaccines. The viral proteases are the most attractive targets for developing antiviral drugs. In this scenario, our study explores the use of HIV-1 protease inhibitors against SARS-CoV-2. An in silico screening of a library of HIV-1 proteases identified four anti-HIV compounds able to interact with the 3CLpro of SARS-CoV-2. Thus, in vitro studies were designed to evaluate their potential antiviral effectiveness against SARS-CoV-2. We employed pseudovirus technology to simulate, in a highly safe manner, the adsorption of the alpha (α-SARS-CoV-2) and omicron (ο-SARS-CoV-2) variants of SARS-CoV-2 and study the inhibitory mechanism of the selected compounds for cell-virus interaction. The results reported a mild activity against the viral proteases 3CLpro and PLpro, but efficient inhibitory effects on the internalization of both variants mediated by cathepsin B/L. Our findings provide insights into the feasibility of using drugs exhibiting antiviral effects for other viruses against the viral and host SARS-CoV-2 proteases required for entry.


Asunto(s)
COVID-19 , Proteasas de Cisteína , Humanos , SARS-CoV-2/genética , Inhibidores de Proteasas/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , Cisteína Endopeptidasas/genética , Proteasas Virales , Simulación del Acoplamiento Molecular
2.
Viruses ; 16(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257824

RESUMEN

Epstein-Barr (EBV) is a human γ-herpesvirus that undergoes both a productive (lytic) cycle and a non-productive (latent) phase. The virus establishes enduring latent infection in B lymphocytes and productive infection in the oral mucosal epithelium. Like other herpesviruses, EBV expresses its genes in a coordinated pattern during acute infection. Unlike others, it replicates its DNA during latency to maintain the viral genome in an expanding pool of B lymphocytes, which are stimulated to divide upon infection. The reactivation from the latent state is associated with a productive gene expression pattern mediated by virus-encoded transcriptional activators BZLF-1 and BRLF-1. EBV is a highly transforming virus that contributes to the development of human lymphomas. Though viral vectors and mRNA platforms have been used to develop an EBV prophylactic vaccine, currently, there are no vaccines or antiviral drugs for the prophylaxis or treatment of EBV infection and EBV-associated cancers. Natural products and bioactive compounds are widely studied for their antiviral potential and capability to modulate intracellular signaling pathways. This review was intended to collect information on plant-derived products showing their antiviral activity against EBV and evaluate their feasibility as an alternative or adjuvant therapy against EBV infections and correlated oncogenesis in humans.


Asunto(s)
Productos Biológicos , Infecciones por Virus de Epstein-Barr , Magnoliopsida , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Linfocitos B , Carcinogénesis , Antivirales
3.
Pathogens ; 12(9)2023 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-37764935

RESUMEN

The activation of the innate immune response during HSV-1 infection stimulates several transcription factors, such as NF-κB and IRF3, which are critical regulators of IFN-ß expression. The released IFN-ß activates the ISGs, which encode antiviral effectors such as the PKR. We found that HSV-1 triggers an antiviral transcriptional response during viral replication by activating TBK1-IRF3-NF-κB network kinetically. In contrast, we reported that infected PKR-/- cells fail to activate the transcription of TBK1. Downstream, TBK1 was unable to activate the transcription of IRF3 and NF-κB. These data suggested that in PKR-/- cells, HSV-1 replication counteracts TBK1-IRF3-NF-κB network. In this scenario, a combined approach of gene knockout and gene silencing was used to determine how the lack of PKR facilitates HSV-1 replication. We reported that in HEp-2-infected cells, PKR can influence the TBK1-IRF3-NF-κB network, consequently interfering with viral replication. Otherwise, an abrogated PKR-mediated signaling sustains the HSV-1 replication. Our result allows us to add additional information on the complex HSV-host interaction network by reinforcing the concept of the PKR role in the innate response-related networks during HSV replication in an in vitro model.

4.
Viruses ; 15(8)2023 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-37631995

RESUMEN

The search for alternative clinical treatments to fight resistance and find alternative antiviral treatments for the herpes simplex virus (HSV) is of great interest. Plants are rich sources of novel antiviral, pharmacologically active agents that provide several advantages, including reduced side effects, less resistance, low toxicity, and different mechanisms of action. In the present work, the antiviral activity of Californian natural raw (NRRE) and roasted unsalted (RURE) pistachio polyphenols-rich extracts was evaluated against HSV-1 using VERO cells. Two different extraction methods, with or without n-hexane, were used. Results showed that n-hexane-extracted NRRE and RURE exerted an antiviral effect against HSV-1, blocking virus binding on the cell surface, affecting viral DNA synthesis as well as accumulation of ICP0, UL42, and Us11 viral proteins. Additionally, the identification and quantification of phenolic compounds by RP-HPLC-DAD confirmed that extraction with n-hexane exclusively accumulated tocopherols, carotenoids, and xanthophylls. Amongst these, zeaxanthin exhibited strong antiviral activity against HSV-1 (CC50: 16.1 µM, EC50 4.08 µM, SI 3.96), affecting both the viral attachment and penetration and viral DNA synthesis. Zeaxanthin is a dietary carotenoid that accumulates in the retina as a macular pigment. The use of pistachio extracts and derivates should be encouraged for the topical treatment of ocular herpetic infections.


Asunto(s)
Herpesvirus Humano 1 , Pistacia , Chlorocebus aethiops , Animales , Zeaxantinas/farmacología , ADN Viral , Células Vero , Antivirales/farmacología , Carotenoides , Extractos Vegetales/farmacología
5.
Nutrients ; 15(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986275

RESUMEN

The almond industry produces, by bleaching and stripping, two by-products: blanched skin (BS) and blanch water (BW). The aim of this study was to investigate the nutritional and polyphenolic profile, as well as the antioxidant, antimicrobial, antiviral, and potential prebiotic effects of BS and BW from three different Sicilian cultivars. The total phenols and flavonoids contents were ≥1.72 and ≥0.56 g gallic acid equivalents and ≥0.52 and ≥0.18 g rutin equivalents/100 g dry extract (DE) in BS and BW, respectively. The antioxidant activity, evaluated by 2,2-diphenyl-1-picrylhydrazyl scavenging ability, trolox equivalent antioxidant capacity, ferric-reducing antioxidant power, and oxygen radical absorbance capacity, was ≥3.07 and ≥0.83 g trolox equivalent/100 g DE in BS and BW, respectively. Isorhamnetin-3-O-glucoside was the most abundant flavonoid detected in both by-products. No antimicrobial effect was recorded, whereas BS samples exerted antiviral activity against herpes simplex virus 1 (EC50 160.96 µg/mL). BS also showed high fibre (≥52.67%) and protein (≥10.99) contents and low fat (≤15.35%) and sugars (≤5.55%), making it nutritionally interesting. The present study proved that the cultivar is not a discriminating factor in determining the chemical and biological properties of BS and BW.


Asunto(s)
Antioxidantes , Prunus dulcis , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Flavonoides/farmacología , Flavonoides/química , Fenoles/farmacología , Fenoles/química
6.
Biomolecules ; 13(2)2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36830607

RESUMEN

The present study aims to assess the antioxidant and antiviral effectiveness of leaf extracts obtained from Olea europaea L. var. sativa and Olea europaea L. var. sylvestris. The total antioxidant activity was determined via both an ammonium phosphomolybdate assay and a nitric oxide radical inhibition assay. Both extracts showed reducing abilities in an in vitro system and in human HeLa cells. Indeed, after oxidative stress induction, we found that exposition to olive leaf extracts protects human HeLa cells from lipid peroxidation and increases the concentration of enzyme antioxidants such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase. Additionally, OESA treatment affects viral DNA accumulation more than OESY, probably due to the exclusive oleuropein content. In fact, subtoxic concentrations of oleuropein inhibit HSV-1 replication, stimulating the phosphorylation of PKR, c-FOS, and c-JUN proteins. These results provide new knowledge about the potential health benefits and mechanisms of action of oleuropein and oleuropein-rich extracts.


Asunto(s)
Neoplasias , Olea , Humanos , Antioxidantes/farmacología , Olea/metabolismo , Células HeLa , Iridoides , Extractos Vegetales/farmacología
7.
Biomolecules ; 14(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38254643

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has provoked a global health crisis due to the absence of a specific therapeutic agent. 3CLpro (also known as the main protease or Mpro) and PLpro are chymotrypsin-like proteases encoded by the SARS-CoV-2 genome, and play essential roles during the virus lifecycle. Therefore, they are recognized as a prospective therapeutic target in drug discovery against SARS-CoV-2 infection. Thus, this work aims to collectively present potential natural 3CLpro and PLpro inhibitors by in silico simulations and in vitro entry pseudotype-entry models. We screened luteolin-7-O-glucuronide (L7OG), cynarin (CY), folic acid (FA), and rosmarinic acid (RA) molecules against PLpro and 3CLpro through a luminogenic substrate assay. We only reported moderate inhibitory activity on the recombinant 3CLpro and PLpro by L7OG and FA. Afterward, the entry inhibitory activity of L7OG and FA was tested in cell lines transduced with the two different SARS-CoV-2 pseudotypes harboring alpha (α) and omicron (o) spike (S) protein. The results showed that both compounds have a consistent inhibitory activity on the entry for both variants. However, L7OG showed a greater degree of entry inhibition against α-SARS-CoV-2. Molecular modeling studies were used to determine the inhibitory mechanism of the candidate molecules by focusing on their interactions with residues recognized by the protease active site and receptor-binding domain (RBD) of spike SARS-CoV-2. This work allowed us to identify the binding sites of FA and L7OG within the RBD domain in the alpha and omicron variants, demonstrating how FA is active in both variants. We have confidence that future in vivo studies testing the safety and effectiveness of these natural compounds are warranted, given that they are effective against a variant of concerns.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Productos Biológicos/farmacología , Quimasas , Ácido Fólico
8.
Viruses ; 14(12)2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36560643

RESUMEN

Punica granatum is a rich source of bioactive compounds which exhibit various biological effects. In this study, pomegranate peel and leaf ethanolic crude extracts (PPE and PLE, respectively) were phytochemically characterized and screened for antioxidant, antimicrobial and antiviral activity. LC-PDA-ESI-MS analysis led to the identification of different compounds, including ellagitannins, flavonoids and phenolic acids. The low IC50 values, obtained by DPPH and FRAP assays, showed a noticeable antioxidant effect of PPE and PLE comparable to the reference standards. Both crude extracts and their main compounds (gallic acid, ellagic acid and punicalagin) were not toxic on Vero cells and exhibited a remarkable inhibitory effect on herpes simplex type 1 (HSV-1) viral plaques formation. Specifically, PPE inhibited HSV-1 adsorption to the cell surface more than PLE. Indeed, the viral DNA accumulation, the transcription of viral genes and the expression of viral proteins were significantly affected by PPE treatment. Amongst the compounds, punicalagin, which is abundant in PPE crude extract, inhibited HSV-1 replication, reducing viral DNA and transcripts accumulation, as well as proteins of all three phases of the viral replication cascade. In contrast, no antibacterial activity was detected. In conclusion, our findings indicate that Punica granatum peel and leaf extracts, especially punicalagin, could be a promising therapeutic candidate against HSV-1.


Asunto(s)
Herpesvirus Humano 1 , Lythraceae , Granada (Fruta) , Animales , Chlorocebus aethiops , Extractos Vegetales/química , Células Vero , ADN Viral , Lythraceae/química , Antioxidantes/farmacología
9.
Sci Rep ; 12(1): 12317, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853963

RESUMEN

The HSV-1 tegument protein Us11 counteracts the antiviral defense mechanisms by precluding the host protein shutoff. Previous works demonstrated that Us11 prevents heat-and staurosporine-induced apoptosis and inhibits autophagy. Therefore, in the present study, we investigated the hypothesis that HSV-1, through Us11, could recruit caspase-8, a key enzyme regulating programmed cell death. We first show that HSV-1 promotes the accumulation of caspase-8-p18 active fragments in both semi permissive THP-1 cells and fully permissive HEp-2 cells to HSV-1 replication. Using a recombinant virus R3630 (ΔUs11/ΔUs12) and a plasmid encoding Us11-recombinant protein we have proven that Us11 promotes p18 accumulation, which does not trigger the apoptotic signaling. Additional, in an in vitro model, we demonstrated that Us11-recombinant protein induces caspase-8-p18 cleavage by physically interacting with the caspase-8 recombinant protein. Finally, we found that, during HSV-1 replication, activated-caspase-8 cleaves Atg3 protein to potentially block autophagy and support its replication.


Asunto(s)
Herpesvirus Humano 1 , Caspasa 8/genética , Caspasa 8/metabolismo , Herpesvirus Humano 1/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
10.
Biomolecules ; 12(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35053211

RESUMEN

In the last decade, nanotechnological progress has generated new opportunities to improve the safety and efficacy of conventional anticancer therapies. Compared with other carriers, graphene nanoplatforms possess numerous tunable functionalities for the loading of multiple bioactive compounds, although their biocompatibility is still a debated concern. Recently, we have investigated the modulation of genes involved in cancer-associated canonical pathways induced by graphene engineered with cyclodextrins (GCD). Here, we investigated the GCD impact on cells safety, the HEp-2 responsiveness to Doxorubicin (DOX) and the cancer-related intracellular signalling pathways modulated by over time exposure to DOX loaded on GCD (GCD@DOX). Our studies evidenced that both DOX and GCD@DOX induced p53 and p21 signalling resulting in G0/G1 cell cycle arrest. A genotoxic behaviour of DOX was reported via detection of CDK (T14/Y15) activation and reduction of Wee-1 expression. Similarly, we found a cleavage of PARP by DOX within 72 h of exposure. Conversely, GCD@DOX induced a late cleavage of PARP, which could be indicative of less toxic effect due to controlled release of the drug from the GCD nanocarrier. Finally, the induction of the autophagy process supports the potential recycling of DOX with the consequent limitation of its toxic effects. Together, these findings demonstrate that GCD@DOX is a biocompatible drug delivery system able to evade chemoresistance and doxorubicin toxicity.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Ciclodextrinas , Doxorrubicina , Portadores de Fármacos , Grafito , Nanoestructuras , Neoplasias , Línea Celular Tumoral , Ciclodextrinas/química , Ciclodextrinas/farmacocinética , Ciclodextrinas/farmacología , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Grafito/química , Grafito/farmacocinética , Grafito/farmacología , Humanos , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
11.
Plants (Basel) ; 10(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34834807

RESUMEN

Olea europaea L. var. sativa (OESA) preparations are widely used in traditional medicine in the Mediterranean region to prevent and treat different diseases. In this research, olive extracts derived from the leaves of the OESA tree have been screened for antioxidant activity by two methods: the DPPH free radical scavenging assay (DPPH) and the Ferric reducing antioxidant power (FRAP) assay. The DPPH assay showed that OESA possesses a stronger antioxidant activity (84%) at 1 mg/mL while the FRAP method showed a strong metal ion chelating activity (90%) at 1 mg/mL. The low IC50 values, obtained by two different methods, implies that OESA has a noticeable effect on scavenging free radicals comparable to standards. During EBV infection, the free radicals increased triggering lipid oxidation. Therefore, the monitoring of the secondary lipid peroxidation products was done by measuring malonaldehyde (MDA) and conjugated dienes (DC). The simultaneous treatment of Raji cells with OESA and TPA, as an inductorof the lytic cycle, generated a significant decrease in MDA levels and DC (p < 0.05). Besides, Raji cells simultaneously exposed to TPA and OESA exhibited a percentage of EBV-positive fluorescence cells lower than TPA treated cells (**** p < 0.0001). This suggests that OESA treatment has a protective effect against EBV lytic cycle induction.

12.
Int J Nanomedicine ; 16: 5981-6002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34511901

RESUMEN

Gene therapy is a promising approach for the treatment of several diseases, such as chronic or viral infections, inherited disorders, and cancer. The cellular internalization of exogenous nucleic acids (NA) requires efficient delivery vehicles to overcome their inherent pharmacokinetic drawbacks, e.g. electrostatic repulsions, enzymatic degradation, limited cellular uptake, fast clearance, etc. Nanotechnological advancements have enabled the use of polymer-based nanostructured biomaterials as safe and effective gene delivery systems, in addition to viral vector delivery methods. Among the plethora of polymeric nanoparticles (NPs), this review will provide a comprehensive and in-depth summary of the polyester-based nanovehicles, including poly(lactic-co-glycolic acid) (PLGA) and polylactic acid (PLA) NPs, used to deliver a variety of foreign NA, e.g. short interfering RNA (siRNA), messenger RNA (mRNA), and plasmid DNA (pDNA). The article will review the versatility of polyester-based nanocarriers including their recent application in the delivery of the clustered, regularly-interspaced, short palindromic repeats/Cas (CRISPR/Cas) genome editing system for treating gene-related diseases. The remaining challenges and future trend of the targeted delivery of this revolutionary genome-editing system will be discussed. Special attention will be given to the pivotal role of nanotechnology in tackling emerging infections such as coronavirus disease 2019 (COVID-19): ground-breaking mRNA vaccines delivered by NPs are currently used worldwide to fight the pandemic, pushing the boundaries of gene therapy.


Asunto(s)
COVID-19 , Nanopartículas , Sistemas CRISPR-Cas , Técnicas de Transferencia de Gen , Terapia Genética , Humanos , Poliésteres , SARS-CoV-2
13.
Viruses ; 13(6)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200316

RESUMEN

Owing to the richness of bioactive compounds, Olea europea leaf extracts exhibit a range of health effects. The present research evaluated the antibacterial and antiviral effect of leaf extracts obtained from Olea europea L. var. sativa (OESA) and Olea europea var. sylvestris (OESY) from Tunisia. LC-DAD-ESI-MS analysis allowed the identification of different compounds that contributed to the observed biological properties. Both OESA and OESY were active against Gram-positive bacteria (MIC values between 7.81 and 15.61 µg/mL and between 15.61 and 31.25 µg/mL against Staphylococcus aureus ATCC 6538 for OESY and OESA, respectively). The antiviral activity against the herpes simplex type 1 (HSV-1) was assessed on Vero cells. The results of cell viability indicated that Olea europea leaf extracts were not toxic to cultured Vero cells. The half maximal cytotoxic concentration (CC50) values for OESA and OESY were 0.2 mg/mL and 0.82 mg/mL, respectively. Furthermore, both a plaque reduction assay and viral entry assay were used to demonstrate the antiviral activity. In conclusion, Olea europea leaf extracts demonstrated a bacteriostatic effect, as well as remarkable antiviral activity, which could provide an alternative treatment against resistant strains.


Asunto(s)
Antibacterianos/farmacología , Antivirales/farmacología , Herpesvirus Humano 1/efectos de los fármacos , Olea/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Supervivencia Celular , Chlorocebus aethiops , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/efectos de los fármacos , Herpes Simple/tratamiento farmacológico , Fitoquímicos , Extractos Vegetales/química , Células Vero
14.
Viruses ; 13(5)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064347

RESUMEN

Viral infections are responsible for several chronic and acute diseases in both humans and animals. Despite the incredible progress in human medicine, several viral diseases, such as acquired immunodeficiency syndrome, respiratory syndromes, and hepatitis, are still associated with high morbidity and mortality rates in humans. Natural products from plants or other organisms are a rich source of structurally novel chemical compounds including antivirals. Indeed, in traditional medicine, many pathological conditions have been treated using plant-derived medicines. Thus, the identification of novel alternative antiviral agents is of critical importance. In this review, we summarize novel phytochemicals with antiviral activity against human viruses and their potential application in treating or preventing viral disease.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Descubrimiento de Drogas , Animales , Antivirales/química , Antivirales/uso terapéutico , Productos Biológicos/química , Productos Biológicos/uso terapéutico , Virus ADN/efectos de los fármacos , Virus ADN/fisiología , Desarrollo de Medicamentos , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Virus ARN/efectos de los fármacos , Virus ARN/fisiología , Virosis/diagnóstico , Virosis/tratamiento farmacológico , Virosis/etiología , Virosis/metabolismo , Replicación Viral/efectos de los fármacos
16.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573283

RESUMEN

The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The ability of the newly synthesized compound to inhibit viral replication was evaluated by a viral cytopathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coronaviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 µM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 µM, 307 ± 11.63 µM, and 174 ± 7.6 µM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose.


Asunto(s)
Antivirales/química , Coronavirus Humano 229E/metabolismo , Dipéptidos/química , Cetonas/química , Células A549 , Antivirales/farmacología , Sitios de Unión , COVID-19/patología , COVID-19/virología , Línea Celular , Proteínas M de Coronavirus/química , Proteínas M de Coronavirus/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Termodinámica , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Replicación Viral/efectos de los fármacos
17.
Int J Mol Sci ; 21(14)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664456

RESUMEN

The graphene road in nanomedicine still seems very long and winding because the current knowledge about graphene/cell interactions and the safety issues are not yet sufficiently clarified. Specifically, the impact of graphene exposure on gene expression is a largely unexplored concern. Herein, we investigated the intracellular fate of graphene (G) decorated with cyclodextrins (CD) and loaded with doxorubicin (DOX) and the modulation of genes involved in cancer-associated canonical pathways. Intracellular fate of GCD@DOX, tracked by FLIM, Raman mapping and fluorescence microscopy, evidenced the efficient cellular uptake of GCD@DOX and the presence of DOX in the nucleus, without graphene carrier. The NanoString nCounter™ platform provided evidence for 34 (out of 700) differentially expressed cancer-related genes in HEp-2 cells treated with GCD@DOX (25 µg/mL) compared with untreated cells. Cells treated with GCD alone (25 µg/mL) showed modification for 16 genes. Overall, 14 common genes were differentially expressed in both GCD and GCD@DOX treated cells and 4 of these genes with an opposite trend. The modification of cancer related genes also at sub-cytotoxic G concentration should be taken in consideration for the rational design of safe and effective G-based drug/gene delivery systems. The reliable advantages provided by NanoString® technology, such as sensibility and the direct RNA measurements, could be the cornerstone in this field.


Asunto(s)
Ciclodextrinas/metabolismo , Doxorrubicina/metabolismo , Expresión Génica/efectos de los fármacos , Grafito/metabolismo , Nanoestructuras/administración & dosificación , Neoplasias/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Ciclodextrinas/farmacología , Doxorrubicina/farmacología , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Técnicas de Transferencia de Gen , Humanos , Ratones , Neoplasias/tratamiento farmacológico
18.
Nanomaterials (Basel) ; 10(6)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466536

RESUMEN

Graphene-based materials are intriguing nanomaterials with applications ranging from nanotechnology-related devices to drug delivery systems and biosensing. Multifunctional graphene platforms were proposed for the detection of several typical biomarkers (i.e., circulating tumor cells, exosomes, circulating nucleic acids, etc.) in liquid biopsy, and numerous methods, including optical, electrochemical, surface-enhanced Raman scattering (SERS), etc., have been developed for their detection. Due to the massive advancements in biology, material chemistry, and analytical technology, it is necessary to review the progress in this field from both medical and chemical sides. Liquid biopsy is considered a revolutionary technique that is opening unexpected perspectives in the early diagnosis and, in therapy monitoring, severe diseases, including cancer, metabolic syndrome, autoimmune, and neurodegenerative disorders. Although nanotechnology based on graphene has been poorly applied for the rapid diagnosis of viral diseases, the extraordinary properties of graphene (i.e., high electronic conductivity, large specific area, and surface functionalization) can be also exploited for the diagnosis of emerging viral diseases, such as the coronavirus disease 2019 (COVID-19). This review aimed to provide a comprehensive and in-depth summarization of the contribution of graphene-based nanomaterials in liquid biopsy, discussing the remaining challenges and the future trend; moreover, the paper gave the first look at the potentiality of graphene in COVID-19 diagnosis.

19.
Mar Drugs ; 18(4)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340389

RESUMEN

The current emergency due to the worldwide spread of the COVID-19 caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a great concern for global public health. Already in the past, the outbreak of severe acute respiratory syndrome (SARS) in 2003 and Middle Eastern respiratory syndrome (MERS) in 2012 demonstrates the potential of coronaviruses to cross-species borders and further underlines the importance of identifying new-targeted drugs. An ideal antiviral agent should target essential proteins involved in the lifecycle of SARS-CoV. Currently, some HIV protease inhibitors (i.e., Lopinavir) are proposed for the treatment of COVID-19, although their effectiveness has not yet been assessed. The main protease (Mpr) provides a highly validated pharmacological target for the discovery and design of inhibitors. We identified potent Mpr inhibitors employing computational techniques that entail the screening of a Marine Natural Product (MNP) library. MNP library was screened by a hyphenated pharmacophore model, and molecular docking approaches. Molecular dynamics and re-docking further confirmed the results obtained by structure-based techniques and allowed this study to highlight some crucial aspects. Seventeen potential SARS-CoV-2 Mpr inhibitors have been identified among the natural substances of marine origin. As these compounds were extensively validated by a consensus approach and by molecular dynamics, the likelihood that at least one of these compounds could be bioactive is excellent.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/enzimología , Infecciones por Coronavirus , Pandemias , Neumonía Viral , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/química , Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , COVID-19 , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas , Bases de Datos de Compuestos Químicos , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
20.
Sci Rep ; 10(1): 5580, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221365

RESUMEN

To replicate, spread and persist in the host environment, viruses have evolved several immunological escape mechanisms via the action of specific viral proteins. The model "host shut off" adopted by virion host shut off (VHS) protein of Herpes simplex type 1 (HSV-1) represents an immune evasion mechanism which affects the best-characterized component of the innate immunological response, protein kinase R (PKR). However, up to now, the real mechanism employed by VHS to control PKR is still unknown. In this paper, we implement and extend our previous findings reporting that wild-type HSV-1 is able to control PKR, whereas a VHS mutant virus (R2621) clearly induces an accumulation of phosphorylated PKR in several cell types in a VHS-RNase activity-dependent manner. Furthermore, we demonstrate for the first time a new PKR-regulatory mechanism based on the involvement of Us3 and UL13 tegument viral proteins. The combined approach of transfection and infection assay was useful to discover the new role of both viral proteins in the immunological escape and demonstrate that Us3 and UL13 control the accumulation of the phosphorylated form (ph-PKR). Lastly, since protein kinases are tightly regulated by phosphorylation events and, at the same time, phosphorylate other proteins by inducing post-translational modifications, the interplay between Us3 and VHS during HSV-1 infection has been investigated. Interestingly, we found that VHS protein accumulates at higher molecular weight following Us3 transfection, suggesting an Us3-mediated phosphorylation of VHS. These findings reveal a new intriguing interplay between viral proteins during HSV-1 infection involved in the regulation of the PKR-mediated immune response.


Asunto(s)
Herpesvirus Humano 1/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleasas/metabolismo , Proteínas Virales/metabolismo , eIF-2 Quinasa/metabolismo , Línea Celular , Interacciones Huésped-Patógeno , Humanos , ARN Mensajero/metabolismo , ARN Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...