Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Theor Biol ; 591: 111865, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38823767

RESUMEN

Dengue is a vector-borne disease transmitted by Aedes mosquitoes. The worldwide spread of these mosquitoes and the increasing disease burden have emphasized the need for a spatio-temporal risk map capable of assessing dengue outbreak conditions and quantifying the outbreak risk. Given that the life cycle of Aedes mosquitoes is strongly influenced by habitat temperature, numerous studies have utilized temperature-dependent development rates of these mosquitoes to construct virus transmission and outbreak risk models. In this study, we contribute to existing research by developing a mechanistic model for the mosquito life cycle that accurately captures its non-Markovian nature. Beginning with integral equations to track the mosquito population across different life cycle stages, we demonstrate how to derive the corresponding differential equations using phase-type distributions. This approach can be further applied to similar non-Markovian processes that are currently described with less accurate Markovian models. By fitting the model to data on human dengue cases, we estimate several model parameters, allowing the development of a global spatiotemporal dengue risk map. This risk model employs temperature and precipitation data to assess the environmental suitability for dengue outbreaks in a given area.


Asunto(s)
Aedes , Dengue , Dengue/transmisión , Dengue/epidemiología , Animales , Aedes/virología , Humanos , Brotes de Enfermedades , Mosquitos Vectores/virología , Mosquitos Vectores/crecimiento & desarrollo , Modelos Biológicos , Temperatura , Cadenas de Markov , Medición de Riesgo , Virus del Dengue/fisiología
2.
Sci Rep ; 13(1): 20337, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37990067

RESUMEN

African animal trypanosomiasis (AAT) is one of the major constraints to animal health and production in sub-Saharan Africa. To inform AAT control in Uganda and help advance along the progressive control pathway (PCP), we characterized AAT prevalence among eight host species in Uganda and explored factors that influence the prevalence variation between studies. We retrieved AAT prevalence publications (n = 2232) for Uganda (1980-2022) from five life sciences databases, focusing on studies specifying AAT detection methods, sample size, and the number of trypanosome-positive animals. Following PRISMA guidelines, we included 56 publications, and evaluated publication bias by the Luis Furuya-Kanamori (LFK) index. National AAT prevalence under DNA diagnostic methods for cattle, sheep and goats was 22.15%, 8.51% and 13.88%, respectively. Under DNA diagnostic methods, T. vivax was the most common Trypanosoma sp. in cattle (6.15%, 95% CI: 2.91-10.45) while T. brucei was most common among small ruminants (goats: 8.78%, 95% CI: 1.90-19.88, and sheep: 8.23%, 95% CI: 4.74-12.50, respectively). Northern and Eastern regions accounted for the highest AAT prevalence. Despite the limitations of this study (i.e., quality of reviewed studies, underrepresentation of districts/regions), we provide insights that could be used for better control of AAT in Uganda and identify knowledge gaps that need to be addressed to support the progressive control of AAT at country level and other regional endemic countries with similar AAT eco-epidemiology.


Asunto(s)
Trypanosoma , Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Bovinos , Ovinos , Animales Domésticos , Ganado , Prevalencia , Uganda/epidemiología , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/veterinaria , Trypanosoma/genética , Rumiantes , Cabras , ADN
3.
J Innate Immun ; 15(1): 680-696, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37703846

RESUMEN

Insect humoral immune responses are regulated in part by protease cascades, whose components circulate as zymogens in the hemolymph. In mosquitoes, these cascades consist of clip-domain serine proteases (cSPs) and/or their non-catalytic homologs, which form a complex network, whose molecular make-up is not fully understood. Using a systems biology approach, based on a co-expression network of gene family members that function in melanization and co-immunoprecipitation using the serine protease inhibitor (SRPN)2, a key negative regulator of the melanization response in mosquitoes, we identify the cSP CLIPB4 from the African malaria mosquito Anopheles gambiae as a central node in this protease network. CLIPB4 is tightly co-expressed with SRPN2 and forms protein complexes with SRPN2 in the hemolymph of immune-challenged female mosquitoes. Genetic and biochemical approaches validate our network analysis and show that CLIPB4 is required for melanization and antibacterial immunity, acting as a prophenoloxidase (proPO)-activating protease, which is inhibited by SRPN2. In addition, we provide novel insight into the structural organization of the cSP network in An. gambiae, by demonstrating that CLIPB4 is able to activate proCLIPB8, a cSP upstream of the proPO-activating protease CLIPB9. These data provide the first evidence that, in mosquitoes, cSPs provide branching points in immune protease networks and deliver positive reinforcement in proPO activation cascades.


Asunto(s)
Anopheles , Serpinas , Animales , Femenino , Inmunidad Humoral , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Serina Proteasas/genética , Serpinas/genética , Serpinas/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
4.
Phys Rev E ; 108(1-1): 014405, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37583213

RESUMEN

The Markovian approach, which assumes exponentially distributed interinfection times, is dominant in epidemic modeling. However, this assumption is unrealistic as an individual's infectiousness depends on its viral load and varies over time. In this paper, we present a Susceptible-Infected-Recovered-Vaccinated-Susceptible epidemic model incorporating non-Markovian infection processes. The model can be easily adapted to accurately capture the generation time distributions of emerging infectious diseases, which is essential for accurate epidemic prediction. We observe noticeable variations in the transient behavior under different infectiousness profiles and the same basic reproduction number R_{0}. The theoretical analyses show that only R_{0} and the mean immunity period of the vaccinated individuals have an impact on the critical vaccination rate needed to achieve herd immunity. A vaccination level at the critical vaccination rate can ensure a very low incidence among the population in the case of future epidemics, regardless of the infectiousness profiles.


Asunto(s)
Epidemias , Humanos , Epidemias/prevención & control , Vacunación , Tiempo , Susceptibilidad a Enfermedades
5.
BMC Bioinformatics ; 24(1): 281, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37434115

RESUMEN

BACKGROUND: Network analysis is a powerful tool for studying gene regulation and identifying biological processes associated with gene function. However, constructing gene co-expression networks can be a challenging task, particularly when dealing with a large number of missing values. RESULTS: We introduce GeCoNet-Tool, an integrated gene co-expression network construction and analysis tool. The tool comprises two main parts: network construction and network analysis. In the network construction part, GeCoNet-Tool offers users various options for processing gene co-expression data derived from diverse technologies. The output of the tool is an edge list with the option of weights associated with each link. In network analysis part, the user can produce a table that includes several network properties such as communities, cores, and centrality measures. With GeCoNet-Tool, users can explore and gain insights into the complex interactions between genes.


Asunto(s)
Redes Reguladoras de Genes , Programas Informáticos
6.
bioRxiv ; 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37461554

RESUMEN

Insect humoral immune responses are regulated in part by protease cascades, whose components circulate as zymogens in the hemolymph. In mosquitoes, these cascades consist of clip domain serine proteases (cSPs) and/or their non-catalytic homologs (cSPHs), which form a complex network, whose molecular make-up is not fully understood. Using a systems biology approach, based on a co-expression network of gene family members that function in melanization and co-immunoprecipitation using the serine protease inhibitor (SRPN)2, a key negative regulator of the melanization response in mosquitoes, we identify the cSP CLIPB4 from the African malaria mosquito Anopheles gambiae as a central node in this protease network. CLIPB4 is tightly co-expressed with SRPN2 and forms protein complexes with SRPN2 in the hemolymph of immune-challenged female mosquitoes. Genetic and biochemical approaches validate our network analysis and show that CLIPB4 is required for melanization and antibacterial immunity, acting as a prophenoloxidase (proPO)-activating protease, which is inhibited by SRPN2. In addition, we provide novel insight into the structural organization of the cSP network in An. gambiae, by demonstrating that CLIPB4 is able to activate proCLIPB8, a cSP upstream of the proPO-activating protease CLIPB9. These data provide the first evidence that, in mosquitoes, cSPs provide branching points in immune protease networks and deliver positive reinforcement in proPO activation cascades.

7.
Pathogens ; 12(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37375461

RESUMEN

Dengue fever remains a significant public health concern in many tropical and subtropical countries, and there is still a need for a system that can effectively combine global risk assessment with timely incidence forecasting. This research describes an integrated application called PICTUREE-Aedes, which can collect and analyze dengue-related data, display simulation results, and forecast outbreak incidence. PICTUREE-Aedes automatically updates global temperature and precipitation data and contains historical records of dengue incidence (1960-2012) and Aedes mosquito occurrences (1960-2014) in its database. The application utilizes a mosquito population model to estimate mosquito abundance, dengue reproduction number, and dengue risk. To predict future dengue outbreak incidence, PICTUREE-Aedes applies various forecasting techniques, including the ensemble Kalman filter, recurrent neural network, particle filter, and super ensemble forecast, which are all based on user-entered case data. The PICTUREE-Aedes' risk estimation identifies favorable conditions for potential dengue outbreaks, and its forecasting accuracy is validated by available outbreak data from Cambodia.

8.
Sci Rep ; 13(1): 2931, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36804990

RESUMEN

Antimicrobial resistance (AMR) is one of the major challenges of the century and should be addressed with a One Health approach. This study aimed to develop a tool that can provide a better understanding of AMR patterns and improve management practices in swine production systems to reduce its spread between farms. We generated similarity networks based on the phenotypic AMR pattern for each farm with information on important bacterial pathogens for swine farming based on the Euclidean distance. We included seven pathogens: Actinobacillus suis, Bordetella bronchiseptica, Escherichia coli, Glaesserella parasuis, Pasteurella multocida, Salmonella spp., and Streptococcus suis; and up to seventeen antibiotics from ten classes. A threshold criterion was developed to reduce the density of the networks and generate communities based on their AMR profiles. A total of 479 farms were included in the study although not all bacteria information was available on each farm. We observed significant differences in the morphology, number of nodes and characteristics of pathogen networks, as well as in the number of communities and susceptibility profiles of the pathogens to different antimicrobial drugs. The methodology presented here could be a useful tool to improve health management, biosecurity measures and prioritize interventions to reduce AMR spread in swine farming.


Asunto(s)
Antiinfecciosos , Programas de Optimización del Uso de los Antimicrobianos , Animales , Porcinos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Granjas , Farmacorresistencia Bacteriana , Bacterias , Escherichia coli
10.
Sci Rep ; 12(1): 15679, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127385

RESUMEN

As a highly contagious livestock viral disease, foot-and-mouth disease poses a great threat to the beef-cattle industry. Direct animal movement is always considered as a major route for between-farm transmission of FMD virus. Sharing contaminated equipment and vehicles have also attracted increasing interests as an indirect but considerable route for FMD virus transmission. With the rapid development of communication technologies, information-sharing techniques have been used to control epidemics. In this paper, we built farm-level time-series three-layer networks to simulate the between-farm FMD virus transmission in southwest Kansas by cattle movements (direct-contact layer) and truck visits (indirect-contact layer) and evaluate the impact of information-sharing techniques (information-sharing layer) on mitigating the epidemic. Here, the information-sharing network is defined as the structure that enables the quarantine of farms that are connected with infected farms. When a farm is infected, its infection status is shared with the neighboring farms in the information-sharing network, which in turn become quarantined. The results show that truck visits can enlarge the epidemic size and prolong the epidemic duration of the FMD outbreak by cattle movements, and that the information-sharing technique is able to mitigate the epidemic. The mitigation effect of the information-sharing network varies with the information-sharing network topology and different participation levels. In general, an increased participation leads to a decreased epidemic size and an increased quarantine size. We compared the mitigation performance of three different information-sharing networks (random network, contact-based network, and distance-based network) and found the outbreak on the network with contact-based information-sharing layer has the smallest epidemic size under almost any participation level and smallest quarantine size with high participation. Furthermore, we explored the potential economic loss from the infection and the quarantine. By varying the ratio of the average loss of quarantine to the loss of infection, we found high participation results in reduced economic losses under the realistic assumption that culling costs are much greater than quarantine costs.


Asunto(s)
Epidemias , Fiebre Aftosa , Animales , Bovinos , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/veterinaria , Epidemias/veterinaria , Granjas , Fiebre Aftosa/epidemiología , Fiebre Aftosa/prevención & control , Ganado
11.
BMC Bioinformatics ; 23(1): 170, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534830

RESUMEN

BACKGROUND: Gene co-expression networks (GCNs) can be used to determine gene regulation and attribute gene function to biological processes. Different high throughput technologies, including one and two-channel microarrays and RNA-sequencing, allow evaluating thousands of gene expression data simultaneously, but these methodologies provide results that cannot be directly compared. Thus, it is complex to analyze co-expression relations between genes, especially when there are missing values arising for experimental reasons. Networks are a helpful tool for studying gene co-expression, where nodes represent genes and edges represent co-expression of pairs of genes. RESULTS: In this paper, we establish a method for constructing a gene co-expression network for the Anopheles gambiae transcriptome from 257 unique studies obtained with different methodologies and experimental designs. We introduce the sliding threshold approach to select node pairs with high Pearson correlation coefficients. The resulting network, which we name AgGCN1.0, is robust to random removal of conditions and has similar characteristics to small-world and scale-free networks. Analysis of network sub-graphs revealed that the core is largely comprised of genes that encode components of the mitochondrial respiratory chain and the ribosome, while different communities are enriched for genes involved in distinct biological processes. CONCLUSION: Analysis of the network reveals that both the architecture of the core sub-network and the network communities are based on gene function, supporting the power of the proposed method for GCN construction. Application of network science methodology reveals that the overall network structure is driven to maximize the integration of essential cellular functions, possibly allowing the flexibility to add novel functions.


Asunto(s)
Redes Reguladoras de Genes , Transcriptoma , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN
12.
J R Soc Interface ; 19(188): 20210920, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35285285

RESUMEN

After one pandemic year of remote or hybrid instructional modes, universities struggled with plans for an in-person autumn (fall) semester in 2021. To help inform university reopening policies, we collected survey data on social contact patterns and developed an agent-based model to simulate the spread of severe acute respiratory syndrome coronavirus 2 in university settings. Considering a reproduction number of R0 = 3 and 70% immunization effectiveness, we estimated that at least 80% of the university population immunized through natural infection or vaccination is needed for safe university reopening with relaxed non-pharmaceutical interventions (NPIs). By contrast, at least 60% of the university population immunized through natural infection or vaccination is needed for safe university reopening when NPIs are adopted. Nevertheless, attention needs to be paid to large-gathering events that could lead to infection size spikes. At an immunization coverage of 70%, continuing NPIs, such as wearing masks, could lead to a 78.39% reduction in the maximum cumulative infections and a 67.59% reduction in the median cumulative infections. However, even though this reduction is very beneficial, there is still a possibility of non-negligible size outbreaks because the maximum cumulative infection size is equal to 1.61% of the population, which is substantial.


Asunto(s)
COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Brotes de Enfermedades/prevención & control , Humanos , Pandemias/prevención & control , Universidades , Vacunación
13.
Sci Rep ; 12(1): 2640, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173229

RESUMEN

Currently, several western countries have more than half of their population fully vaccinated against COVID-19. At the same time, some of them are experiencing a fourth or even a fifth wave of cases, most of them concentrated in sectors of the populations whose vaccination coverage is lower than the average. So, the initial scenario of vaccine prioritization has given way to a new one where achieving herd immunity is the primary concern. Using an age-structured vaccination model with waning immunity, we show that, under a limited supply of vaccines, a vaccination strategy based on minimizing the basic reproduction number allows for the deployment of a number of vaccine doses lower than the one required for maximizing the vaccination coverage. Such minimization is achieved by giving greater protection to those age groups that, for a given social contact pattern, have smaller fractions of susceptible individuals at the endemic equilibrium without vaccination, that is, to those groups that are more vulnerable to infection.


Asunto(s)
COVID-19/epidemiología , Inmunidad Colectiva , Modelos Inmunológicos , SARS-CoV-2/inmunología , Vacunación , Adulto , Factores de Edad , Anciano , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/transmisión , Niño , Humanos
14.
Phys Rev E ; 106(6-1): 064301, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36671154

RESUMEN

In the studies of network structures, much attention has been devoted to developing approaches to reconstruct networks and predict missing links when edge-related information is given. However, such approaches are not applicable when we are only given noisy node activity data with missing values. This work presents an unsupervised learning framework to learn node vectors and construct networks from such node activity data. First, we design a scheme to generate random node sequences from node context sets, which are generated from node activity data. Then, a three-layer neural network is adopted training the node sequences to obtain node vectors, which allow us to construct networks and capture nodes with synergistic roles. Furthermore, we present an entropy-based approach to select the most meaningful neighbors for each node in the resulting network. Finally, the effectiveness of the method is validated through both synthetic and real data.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Entropía
15.
Phys Rev E ; 104(2-1): 024301, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34525660

RESUMEN

From social networks to biological networks, different types of interactions among the same set of nodes characterize distinct layers, which are termed multilayer networks. Within a multilayer network, some layers, confirmed through different experiments, could be structurally similar and interdependent. In this paper, we propose a maximum a posteriori-based method to study and reconstruct the structure of a target layer in a multilayer network. Nodes within the target layer are characterized by vectors, which are employed to compute edge weights. Further, to detect structurally similar layers, we propose a method for comparing networks based on the eigenvector centrality. Using similar layers, we obtain the parameters of the conjugate prior. With this maximum a posteriori algorithm, we can reconstruct the target layer and predict missing links. We test the method on two real multilayer networks, and the results show that the maximum a posteriori estimation is promising in reconstructing the target layer even when a large number of links is missing.

16.
PLoS One ; 16(6): e0253498, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34166451

RESUMEN

Human behavioral change around biosecurity in response to increased awareness of disease risks is a critical factor in modeling animal disease dynamics. Here, biosecurity is referred to as implementing control measures to decrease the chance of animal disease spreading. However, social dynamics are largely ignored in traditional livestock disease models. Not accounting for these dynamics may lead to substantial bias in the predicted epidemic trajectory. In this research, an agent-based model is developed by integrating the human decision-making process into epidemiological processes. We simulate human behavioral change on biosecurity practices following an increase in the regional disease incidence. We apply the model to beef cattle production systems in southwest Kansas, United States, to examine the impact of human behavior factors on a hypothetical foot-and-mouth disease outbreak. The simulation results indicate that heterogeneity of individuals regarding risk attitudes significantly affects the epidemic dynamics, and human-behavior factors need to be considered for improved epidemic forecasting. With the same initial biosecurity status, increasing the percentage of risk-averse producers in the total population using a targeted strategy can more effectively reduce the number of infected producer locations and cattle losses compared to a random strategy. In addition, the reduction in epidemic size caused by the shifting of producers' risk attitudes towards risk-aversion is heavily dependent on the initial biosecurity level. A comprehensive investigation of the initial biosecurity status is recommended to inform risk communication strategy design.


Asunto(s)
Crianza de Animales Domésticos , Conducta , Enfermedades de los Bovinos/epidemiología , Bovinos , Simulación por Computador , Epidemias , Fiebre Aftosa/epidemiología , Conocimientos, Actitudes y Práctica en Salud , Ganado , Modelos Biológicos , Animales , Femenino , Humanos , Kansas/epidemiología , Masculino
17.
Sci Rep ; 11(1): 4891, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649364

RESUMEN

Contact tracing can play a key role in controlling human-to-human transmission of a highly contagious disease such as COVID-19. We investigate the benefits and costs of contact tracing in the COVID-19 transmission. We estimate two unknown epidemic model parameters (basic reproductive number [Formula: see text] and confirmed rate [Formula: see text]) by using confirmed case data. We model contact tracing in a two-layer network model. The two-layer network is composed by the contact network in the first layer and the tracing network in the second layer. In terms of benefits, simulation results show that increasing the fraction of traced contacts decreases the size of the epidemic. For example, tracing [Formula: see text] of the contacts is enough for any reopening scenario to reduce the number of confirmed cases by half. Considering the act of quarantining susceptible households as the contact tracing cost, we have observed an interesting phenomenon. The number of quarantined susceptible people increases with the increase of tracing because each individual confirmed case is mentioning more contacts. However, after reaching a maximum point, the number of quarantined susceptible people starts to decrease with the increase of tracing because the increment of the mentioned contacts is balanced by a reduced number of confirmed cases. The goal of this research is to assess the effectiveness of contact tracing for the containment of COVID-19 spreading in the different movement levels of a rural college town in the USA. Our research model is designed to be flexible and therefore, can be used to other geographic locations.


Asunto(s)
COVID-19 , Simulación por Computador , Trazado de Contacto , Modelos Biológicos , Población Rural , SARS-CoV-2 , Adolescente , Adulto , COVID-19/epidemiología , COVID-19/transmisión , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estados Unidos/epidemiología
18.
Am J Trop Med Hyg ; 104(4): 1444-1455, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33534755

RESUMEN

Vector-borne disease risk assessment is crucial to optimize surveillance, preventative measures (vector control), and resource allocation (medical supplies). High arthropod abundance and host interaction strongly correlate to vector-borne pathogen transmission. Increasing host density and movement increases the possibility of local and long-distance pathogen transmission. Therefore, we developed a risk-assessment framework using climate (average temperature and rainfall) and host demographic (host density and movement) data, particularly suitable for regions with unreported or underreported incidence data. This framework consisted of a spatiotemporal network-based approach coupled with a compartmental disease model and nonhomogeneous Gillespie algorithm. The correlation of climate data with vector abundance and host-vector interactions is expressed as vectorial capacity-a parameter that governs the spreading of infection from an infected host to a susceptible one via vectors. As an example, the framework is applied for dengue in Bangladesh. Vectorial capacity is inferred for each week throughout a year using average monthly temperature and rainfall data. Long-distance pathogen transmission is expressed with human movement data in the spatiotemporal network. We have identified the spatiotemporal suitability of dengue spreading in Bangladesh as well as the significant-incidence window and peak-incidence period. Analysis of yearly dengue data variation suggests the possibility of a significant outbreak with a new serotype introduction. The outcome of the framework comprised spatiotemporal suitability maps and probabilistic risk maps for spatial infection spreading. This framework is capable of vector-borne disease risk assessment without historical incidence data and can be a useful tool for preparedness with accurate human movement data.


Asunto(s)
Clima , Dengue/epidemiología , Dengue/transmisión , Mosquitos Vectores/virología , Análisis Espacio-Temporal , Enfermedades Transmitidas por Vectores/epidemiología , Aedes/virología , Algoritmos , Animales , Bangladesh/epidemiología , Virus del Dengue/clasificación , Virus del Dengue/patogenicidad , Brotes de Enfermedades , Femenino , Humanos , Incidencia , Medición de Riesgo/métodos , Serogrupo , Temperatura , Enfermedades Transmitidas por Vectores/virología
19.
PLoS One ; 15(10): e0240819, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33064750

RESUMEN

As cattle movement data in the United States are scarce due to the absence of mandatory traceability programs, previous epidemic models for U.S. cattle production systems heavily rely on contact rates estimated based on expert opinions and survey data. These models are often based on static networks and ignore the sequence of movement, possibly overestimating the epidemic sizes. In this research, we adapt and employ an agent-based model that simulates beef cattle production and transportation in southwest Kansas to analyze the between-premises transmission of a highly contagious disease, foot-and-mouth disease. First, we assess the impact of truck contamination on the disease transmission with the truck agent following an independent clean-infected-clean cycle. Second, we add an information-sharing functionality such that producers/packers can trace back and forward their trade records to inform their trade partners during outbreaks. Scenario analysis results show that including indirect contact routes between premises via truck movements can significantly increase the amplitude of disease spread, compared with equivalent scenarios that only consider animal movement. Mitigation strategies informed by information sharing can effectively mitigate epidemics, highlighting the benefit of promoting information sharing in the cattle industry. In addition, we identify salient characteristics that must be considered when designing an information-sharing strategy, including the number of days to trace back and forward in the trade records and the role of different cattle supply chain stakeholders. Sensitivity analysis results show that epidemic sizes are sensitive to variations in parameters of the contamination period for a truck or a loading/unloading area of premises, and indirect contact transmission probability and future studies can focus on a more accurate estimation of these parameters.


Asunto(s)
Enfermedades de los Bovinos/transmisión , Brotes de Enfermedades/veterinaria , Fiebre Aftosa/transmisión , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/patología , Simulación por Computador , Fiebre Aftosa/epidemiología , Fiebre Aftosa/patología , Difusión de la Información , Modelos Biológicos , Vehículos a Motor , Encuestas y Cuestionarios
20.
Infect Dis Model ; 5: 563-574, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32835146

RESUMEN

As an emerging infectious disease, the 2019 coronavirus disease (COVID-19) has developed into a global pandemic. During the initial spreading of the virus in China, we demonstrated the ensemble Kalman filter performed well as a short-term predictor of the daily cases reported in Wuhan City. Second, we used an individual-level network-based model to reconstruct the epidemic dynamics in Hubei Province and examine the effectiveness of non-pharmaceutical interventions on the epidemic spreading with various scenarios. Our simulation results show that without continued control measures, the epidemic in Hubei Province could have become persistent. Only by continuing to decrease the infection rate through 1) protective measures and 2) social distancing can the actual epidemic trajectory that happened in Hubei Province be reconstructed in simulation. Finally, we simulate the COVID-19 transmission with non-Markovian processes and show how these models produce different epidemic trajectories, compared to those obtained with Markov processes. Since recent studies show that COVID-19 epidemiological parameters do not follow exponential distributions leading to Markov processes, future works need to focus on non-Markovian models to better capture the COVID-19 spreading trajectories. In addition, shortening the infectious period via early case identification and isolation can slow the epidemic spreading significantly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...