Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 382(2): 167-180, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35688478

RESUMEN

Understanding the pharmacogenomics of opioid metabolism and behavior is vital to therapeutic success, as mutations can dramatically alter therapeutic efficacy and addiction liability. We found robust, sex-dependent BALB/c substrain differences in oxycodone behaviors and whole brain concentration of oxycodone metabolites. BALB/cJ females showed robust state-dependent oxycodone reward learning as measured via conditioned place preference when compared with the closely related BALB/cByJ substrain. Accordingly, BALB/cJ females also showed a robust increase in brain concentration of the inactive metabolite noroxycodone and the active metabolite oxymorphone compared with BALB/cByJ mice. Oxymorphone is a highly potent, full agonist at the mu opioid receptor that could enhance drug-induced interoception and state-dependent oxycodone reward learning. Quantitative trait locus (QTL) mapping in a BALB/c F2 reduced complexity cross revealed one major QTL on chromosome 15 underlying brain oxymorphone concentration that explained 32% of the female variance. BALB/cJ and BALB/cByJ differ by fewer than 10,000 variants, which can greatly facilitate candidate gene/variant identification. Hippocampal and striatal cis-expression QTL (eQTL) and exon-level eQTL analysis identified Zhx2, a candidate gene coding for a transcriptional repressor with a private BALB/cJ retroviral insertion that reduces Zhx2 expression and sex-dependent dysregulation of cytochrome P450 enzymes. Whole brain proteomics corroborated the Zhx2 eQTL and identified upregulated CYP2D11 that could increase brain oxymorphone in BALB/cJ females. To summarize, Zhx2 is a highly promising candidate gene underlying brain oxycodone metabolite levels. Future studies will validate Zhx2 and its site of action using reciprocal gene editing and tissue-specific viral manipulations in BALB/c substrains. SIGNIFICANCE STATEMENT: Our findings show that genetic variation can result in sex-specific alterations in whole brain concentration of a bioactive opioid metabolite after oxycodone administration, reinforcing the need for sex as a biological factor in pharmacogenomic studies. The cooccurrence of female-specific increased oxymorphone and state-dependent reward learning suggests that this minor yet potent and efficacious metabolite of oxycodone could increase opioid interoception and drug-cue associative learning of opioid reward, which has implications for cue-induced relapse of drug-seeking behavior and for precision pharmacogenetics.


Asunto(s)
Encéfalo , Proteínas de Homeodominio , Oxicodona , Oximorfona , Analgésicos Opioides/farmacología , Animales , Encéfalo/efectos de los fármacos , Femenino , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Oxicodona/farmacología , Oximorfona/farmacología , Recompensa
2.
Mol Pain ; 18: 17448069221079540, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35088629

RESUMEN

Thermal nociception involves the transmission of temperature-related noxious information from the periphery to the CNS and is a heritable trait that could predict transition to persistent pain. Rodent forward genetics complement human studies by controlling genetic complexity and environmental factors, analysis of end point tissue, and validation of variants on appropriate genetic backgrounds. Reduced complexity crosses between nearly identical inbred substrains with robust trait differences can greatly facilitate unbiased discovery of novel genes and variants. We found BALB/cByJ mice showed enhanced sensitivity on the 53.5°C hot plate and mechanical stimulation in the von Frey test compared to BALB/cJ mice and replicated decreased gross brain weight in BALB/cByJ versus BALB/cJ. We then identified a quantitative trait locus (QTL) on chromosome 13 for hot plate sensitivity (LOD = 10.7; p < 0.001; peak = 56 Mb) and a QTL for brain weight on chromosome 5 (LOD = 8.7; p < 0.001). Expression QTL mapping of brain tissues identified H2afy (56.07 Mb) as the top transcript with the strongest association at the hot plate locus (FDR = 0.0002) and spliceome analysis identified differential exon usage within H2afy associated with the same locus. Whole brain proteomics further supported decreased H2AFY expression could underlie enhanced hot plate sensitivity, and identified ACADS as a candidate for reduced brain weight. To summarize, a BALB/c reduced complexity cross combined with multiple-omics approaches facilitated identification of candidate genes underlying thermal nociception and brain weight. These substrains provide a powerful, reciprocal platform for future validation of candidate variants.


Asunto(s)
Nocicepción , Sitios de Carácter Cuantitativo , Animales , Encéfalo , Mapeo Cromosómico , Ratones , Ratones Endogámicos BALB C , Sitios de Carácter Cuantitativo/genética
3.
Neuron ; 109(20): 3239-3251.e7, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34478631

RESUMEN

Human accelerated regions (HARs) are the fastest-evolving regions of the human genome, and many are hypothesized to function as regulatory elements that drive human-specific gene regulatory programs. We interrogate the in vitro enhancer activity and in vivo epigenetic landscape of more than 3,100 HARs during human neurodevelopment, demonstrating that many HARs appear to act as neurodevelopmental enhancers and that sequence divergence at HARs has largely augmented their neuronal enhancer activity. Furthermore, we demonstrate PPP1R17 to be a putative HAR-regulated gene that has undergone remarkable rewiring of its cell type and developmental expression patterns between non-primates and primates and between non-human primates and humans. Finally, we show that PPP1R17 slows neural progenitor cell cycle progression, paralleling the cell cycle length increase seen predominantly in primate and especially human neurodevelopment. Our findings establish HARs as key components in rewiring human-specific neurodevelopmental gene regulatory programs and provide an integrated resource to study enhancer activity of specific HARs.


Asunto(s)
Encéfalo/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Animales , Evolución Biológica , Epigenómica , Evolución Molecular , Hurones , Humanos , Macaca , Ratones , Pan troglodytes
4.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34479978

RESUMEN

The opioid epidemic led to an increase in the number of neonatal opioid withdrawal syndrome (NOWS) cases in infants born to opioid-dependent mothers. Hallmark features of NOWS include weight loss, severe irritability, respiratory problems, and sleep fragmentation. Mouse models provide an opportunity to identify brain mechanisms that contribute to NOWS. Neonatal outbred Swiss Webster Cartworth Farms White (CFW) mice were administered morphine (15 mg/kg, s.c.) twice daily from postnatal day 1 (P1) to P14, an approximation of the third trimester of human gestation. Female and male mice underwent behavioral testing on P7 and P14 to determine the impact of opioid exposure on anxiety and pain sensitivity. Ultrasonic vocalizations (USVs) and daily body weights were also recorded. Brainstems containing pons and medulla were collected during morphine withdrawal on P14 for RNA sequencing. Morphine induced weight loss from P2 to P14, which persisted during adolescence (P21) and adulthood (P50). USVs markedly increased at P7 in females, emerging earlier than males. On P7 and P14, both morphine-exposed female and male mice displayed hyperalgesia on the hot plate and tail-flick assays, with females showing greater hyperalgesia than males. Morphine-exposed mice exhibited increased anxiety-like behavior in the open-field arena on P21. Transcriptome analysis of the brainstem, an area implicated in opioid withdrawal and NOWS, identified pathways enriched for noradrenergic signaling in females and males. We also found sex-specific pathways related to mitochondrial function and neurodevelopment in females and circadian entrainment in males. Sex-specific transcriptomic neuroadaptations implicate unique neurobiological mechanisms underlying NOWS-like behaviors.


Asunto(s)
Analgésicos Opioides , Síndrome de Abstinencia Neonatal , Adulto , Analgésicos Opioides/toxicidad , Animales , Tronco Encefálico , Femenino , Humanos , Recién Nacido , Masculino , Ratones , Síndrome de Abstinencia Neonatal/tratamiento farmacológico , Caracteres Sexuales , Transcriptoma
5.
Physiol Behav ; 197: 51-66, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30261172

RESUMEN

Binge eating (BE) is a heritable symptom of eating disorders associated with anxiety, depression, malnutrition, and obesity. Genetic analysis of BE could facilitate therapeutic discovery. We used an intermittent, limited access BE paradigm involving sweetened palatable food (PF) to examine genetic differences in BE, conditioned food reward, and compulsive-like eating between C57BL/6J (B6J) and DBA/2J (D2J) inbred mouse strains. D2J mice showed a robust escalation in intake and conditioned place preference for the PF-paired side. D2J mice also showed a unique style of compulsive-like eating in the light/dark conflict test where they rapidly hoarded and consumed PF in the preferred unlit environment. BE and compulsive-like eating exhibited narrow-sense heritability estimates between 56 and 73%. To gain insight into the genetic basis, we phenotyped and genotyped a small cohort of 133 B6J × D2J-F2 mice at the peak location of three quantitative trait loci (QTL) previously identified in F2 mice for sweet taste (chromosome 4: 156 Mb), bitter taste (chromosome 6: 133 Mb) and behavioral sensitivity to drugs of abuse (chromosome 11: 50 Mb). The D2J allele on chromosome 6 was associated with greater PF intake on training days and greater compulsive-like PF intake, but only in males, suggesting that decreased bitter taste may increase BE in males. The D2J allele on chromosome 11 was associated with an increase in final PF intake and slope of escalation across days. Future studies employing larger crosses and genetic reference panels comprising B6J and D2J alleles will identify causal genes and neurobiological mechanisms.


Asunto(s)
Trastorno por Atracón/genética , Conducta Compulsiva/genética , Condicionamiento Psicológico , Conducta Alimentaria , Alimentos , Recompensa , Animales , Ansiedad/genética , Ansiedad/fisiopatología , Trastorno por Atracón/fisiopatología , Trastorno por Atracón/psicología , Conducta Compulsiva/fisiopatología , Condicionamiento Psicológico/fisiología , Conducta Alimentaria/fisiología , Femenino , Estudio de Asociación del Genoma Completo , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Fenotipo , Caracteres Sexuales , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...