Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 532(1): e25567, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38289193

RESUMEN

Betz cells, named in honor of Volodymyr Betz (1834-1894), who described them as "giant pyramids" in the primary motor cortex of primates and other mammalian species, are layer V extratelencephalic projection (ETP) neurons that directly innervate α-motoneurons of the brainstem and spinal cord. Despite their large volume and circumferential dendritic architecture, to date, no single molecular criterion has been established that unequivocally distinguishes adult Betz cells from other layer V ETP neurons. In primates, transcriptional signatures suggest the presence of at least two ETP neuron clusters that contain mature Betz cells; these are characterized by an abundance of axon guidance and oxidative phosphorylation transcripts. How neurodevelopmental programs drive the distinct positional and morphological features of Betz cells in humans remains unknown. Betz cells display a distinct biphasic firing pattern involving early cessation of firing followed by delayed sustained acceleration in spike frequency and magnitude. Few cell type-specific transcripts and electrophysiological characteristics are conserved between rodent layer V ETP neurons of the motor cortex and primate Betz cells. This has implications for the modeling of disorders that affect the motor cortex in humans, such as amyotrophic lateral sclerosis (ALS). Perhaps vulnerability to ALS is linked to the evolution of neural networks for fine motor control reflected in the distinct morphomolecular architecture of the human motor cortex, including Betz cells. Here, we discuss histological, molecular, and functional data concerning the position of Betz cells in the emerging taxonomy of neurons across diverse species and their role in neurological disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral , Corteza Motora , Adulto , Humanos , Animales , Células Piramidales , Neuronas Motoras , Primates , Mamíferos
2.
Nat Commun ; 14(1): 7710, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001067

RESUMEN

The spatial organisation of cellular protein expression profiles within tissue determines cellular function and is key to understanding disease pathology. To define molecular phenotypes in the spatial context of tissue, there is a need for unbiased, quantitative technology capable of mapping proteomes within tissue structures. Here, we present a workflow for spatially-resolved, quantitative proteomics of tissue that generates maps of protein abundance across tissue slices derived from a human atypical teratoid-rhabdoid tumour at three spatial resolutions, the highest being 40 µm, to reveal distinct abundance patterns of thousands of proteins. We employ spatially-aware algorithms that do not require prior knowledge of the fine tissue structure to detect proteins and pathways with spatial abundance patterns and correlate proteins in the context of tissue heterogeneity and cellular features such as extracellular matrix or proximity to blood vessels. We identify PYGL, ASPH and CD45 as spatial markers for tumour boundary and reveal immune response-driven, spatially-organised protein networks of the extracellular tumour matrix. Overall, we demonstrate spatially-aware deep proteo-phenotyping of tissue heterogeneity, to re-define understanding tissue biology and pathology at the molecular level.


Asunto(s)
Neoplasias Encefálicas , Tumor Rabdoide , Humanos , Proteómica , Proteoma/metabolismo , Algoritmos
3.
Nat Commun ; 14(1): 4320, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468455

RESUMEN

Understanding brain structure and function often requires combining data across different modalities and scales to link microscale cellular structures to macroscale features of whole brain organisation. Here we introduce the BigMac dataset, a resource combining in vivo MRI, extensive postmortem MRI and multi-contrast microscopy for multimodal characterisation of a single whole macaque brain. The data spans modalities (MRI and microscopy), tissue states (in vivo and postmortem), and four orders of spatial magnitude, from microscopy images with micrometre or sub-micrometre resolution, to MRI signals on the order of millimetres. Crucially, the MRI and microscopy images are carefully co-registered together to facilitate quantitative multimodal analyses. Here we detail the acquisition, curation, and first release of the data, that together make BigMac a unique, openly-disseminated resource available to researchers worldwide. Further, we demonstrate example analyses and opportunities afforded by the data, including improvement of connectivity estimates from ultra-high angular resolution diffusion MRI, neuroanatomical insight provided by polarised light imaging and myelin-stained histology, and the joint analysis of MRI and microscopy data for reconstruction of the microscopy-inspired connectome. All data and code are made openly available.


Asunto(s)
Conectoma , Macaca , Animales , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética , Autopsia , Conectoma/métodos
4.
Nat Commun ; 14(1): 3577, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328468

RESUMEN

In August 2022, a novel henipavirus (HNV) named Langya virus (LayV) was isolated from patients with severe pneumonic disease in China. This virus is closely related to Mòjiang virus (MojV), and both are divergent from the bat-borne HNV members, Nipah (NiV) and Hendra (HeV) viruses. The spillover of LayV is the first instance of a HNV zoonosis to humans outside of NiV and HeV, highlighting the continuing threat this genus poses to human health. In this work, we determine the prefusion structures of MojV and LayV F proteins via cryogenic electron microscopy to 2.66 and 3.37 Å, respectively. We show that despite sequence divergence from NiV, the F proteins adopt an overall similar structure but are antigenically distinct as they do not react to known antibodies or sera. Glycoproteomic analysis revealed that while LayV F is less glycosylated than NiV F, it contains a glycan that shields a site of vulnerability previously identified for NiV. These findings explain the distinct antigenic profile of LayV and MojV F, despite the extent to which they are otherwise structurally similar to NiV. Our results carry implications for broad-spectrum HNV vaccines and therapeutics, and indicate an antigenic, yet not structural, divergence from prototypical HNVs.


Asunto(s)
Infecciones por Henipavirus , Henipavirus , Virus Nipah , Humanos , Glicoproteínas/metabolismo , Proteínas Virales/metabolismo , Virus Nipah/metabolismo
5.
Neuroimage ; 264: 119726, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368503

RESUMEN

The acquisition of MRI and histology in the same post-mortem tissue sample enables direct correlation between MRI and histologically-derived parameters. However, there still lacks a standardised automated pipeline to process histology data, with most studies relying on manual intervention. Here, we introduce an automated pipeline to extract a quantitative histological measure for staining density (stain area fraction, SAF) from multiple immunohistochemical (IHC) stains. The pipeline is designed to directly address key IHC artefacts related to tissue staining and slide digitisation. Here, the pipeline was applied to post-mortem human brain data from multiple subjects, relating MRI parameters (FA, MD, RD, AD, R2*, R1) to IHC slides stained for myelin, neurofilaments, microglia and activated microglia. Utilising high-quality MRI-histology co-registrations, we then performed whole-slide voxelwise comparisons (simple correlations, partial correlations and multiple regression analyses) between multimodal MRI- and IHC-derived parameters. The pipeline was found to be reproducible, robust to artefacts and generalisable across multiple IHC stains. Our partial correlation results suggest that some simple MRI-SAF correlations should be interpreted with caution, due to the co-localisation of other tissue features (e.g., myelin and neurofilaments). Further, we find activated microglia-a generic biomarker of inflammation-to consistently be the strongest predictor of high DTI FA and low RD, which may suggest sensitivity of diffusion MRI to aspects of neuroinflammation related to microglial activation, even after accounting for other microstructural changes (demyelination, axonal loss and general microglia infiltration). Together, these results show the utility of this approach in carefully curating IHC data and performing multimodal analyses to better understand microstructural relationships with MRI.


Asunto(s)
Colorantes , Imagen de Difusión Tensora , Humanos , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética , Vaina de Mielina/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología
6.
Front Immunol ; 13: 963023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059532

RESUMEN

The COVID-19 pandemic response has shown how vaccine platform technologies can be used to rapidly and effectively counteract a novel emerging infectious disease. The speed of development for mRNA and vector-based vaccines outpaced those of subunit vaccines, however, subunit vaccines can offer advantages in terms of safety and stability. Here we describe a subunit vaccine platform technology, the molecular clamp, in application to four viruses from divergent taxonomic families: Middle Eastern respiratory syndrome coronavirus (MERS-CoV), Ebola virus (EBOV), Lassa virus (LASV) and Nipah virus (NiV). The clamp streamlines subunit antigen production by both stabilising the immunologically important prefusion epitopes of trimeric viral fusion proteins while enabling purification without target-specific reagents by acting as an affinity tag. Conformations for each viral antigen were confirmed by monoclonal antibody binding, size exclusion chromatography and electron microscopy. Notably, all four antigens tested remained stable over four weeks of incubation at 40°C. Of the four vaccines tested, a neutralising immune response was stimulated by clamp stabilised MERS-CoV spike, EBOV glycoprotein and NiV fusion protein. Only the clamp stabilised LASV glycoprotein precursor failed to elicit virus neutralising antibodies. MERS-CoV and EBOV vaccine candidates were both tested in animal models and found to provide protection against viral challenge.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Pandemias , Glicoproteína de la Espiga del Coronavirus , Tecnología , Vacunas de Subunidad
7.
Elife ; 112022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35297760

RESUMEN

Post-mortem magnetic resonance imaging (MRI) provides the opportunity to acquire high-resolution datasets to investigate neuroanatomy and validate the origins of image contrast through microscopy comparisons. We introduce the Digital Brain Bank (open.win.ox.ac.uk/DigitalBrainBank), a data release platform providing open access to curated, multimodal post-mortem neuroimaging datasets. Datasets span three themes-Digital Neuroanatomist: datasets for detailed neuroanatomical investigations; Digital Brain Zoo: datasets for comparative neuroanatomy; and Digital Pathologist: datasets for neuropathology investigations. The first Digital Brain Bank data release includes 21 distinctive whole-brain diffusion MRI datasets for structural connectivity investigations, alongside microscopy and complementary MRI modalities. This includes one of the highest-resolution whole-brain human diffusion MRI datasets ever acquired, whole-brain diffusion MRI in fourteen nonhuman primate species, and one of the largest post-mortem whole-brain cohort imaging studies in neurodegeneration. The Digital Brain Bank is the culmination of our lab's investment into post-mortem MRI methodology and MRI-microscopy analysis techniques. This manuscript provides a detailed overview of our work with post-mortem imaging to date, including the development of diffusion MRI methods to image large post-mortem samples, including whole, human brains. Taken together, the Digital Brain Bank provides cross-scale, cross-species datasets facilitating the incorporation of post-mortem data into neuroimaging studies.


Asunto(s)
Acceso a la Información , Encéfalo , Animales , Autopsia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Neuroimagen
8.
Viruses ; 13(9)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34578424

RESUMEN

The use of dengue virus (DENV) vaccines has been hindered by the complexities of antibody dependent enhancement (ADE). Current late-stage vaccine candidates utilize attenuated and chimeric DENVs that produce particles of varying maturities. Antibodies that are elicited by preferentially exposed epitopes on immature virions have been linked to increased ADE. We aimed to further understand the humoral immunity promoted by DENV particles of varying maturities in an AG129 mouse model using a chimeric insect specific vaccine candidate, bDENV-2. We immunized mice with mature, partially mature, and immature bDENV-2 and found that immunization with partially mature bDENV-2 produced more robust and cross-neutralizing immune responses than immunization with immature or mature bDENV-2. Upon challenge with mouse adapted DENV-2 (D220), we observed 80% protection for mature bDENV-2 vaccinated mice and 100% for immature and partially mature vaccinated mice, suggesting that protection to homotypic challenge is not dependent on maturation. Finally, we found reduced in vitro ADE at subneutralising serum concentrations for mice immunized with mature bDENV-2. These results suggest that both immature and mature DENV particles play a role in homotypic protection; however, the increased risk of in vitro ADE from immature particles indicates potential safety benefits from mature DENV-based vaccines.


Asunto(s)
Vacunas contra el Dengue/inmunología , Virus del Dengue/crecimiento & desarrollo , Virus del Dengue/inmunología , Dengue/prevención & control , Inmunidad Humoral , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Acrecentamiento Dependiente de Anticuerpo , Anticuerpos ampliamente neutralizantes/sangre , Anticuerpos ampliamente neutralizantes/inmunología , Dengue/inmunología , Ratones , Eficacia de las Vacunas
9.
Nat Commun ; 12(1): 3266, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075032

RESUMEN

The epidemic emergence of relatively rare and geographically isolated flaviviruses adds to the ongoing disease burden of viruses such as dengue. Structural analysis is key to understand and combat these pathogens. Here, we present a chimeric platform based on an insect-specific flavivirus for the safe and rapid structural analysis of pathogenic viruses. We use this approach to resolve the architecture of two neurotropic viruses and a structure of dengue virus at 2.5 Å, the highest resolution for an enveloped virion. These reconstructions allow improved modelling of the stem region of the envelope protein, revealing two lipid-like ligands within highly conserved pockets. We show that these sites are essential for viral growth and important for viral maturation. These findings define a hallmark of flavivirus virions and a potential target for broad-spectrum antivirals and vaccine design. We anticipate the chimeric platform to be widely applicable for investigating flavivirus biology.


Asunto(s)
Infecciones por Flavivirus/terapia , Flavivirus/ultraestructura , Proteínas del Envoltorio Viral/ultraestructura , Virión/ultraestructura , Aedes/virología , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Línea Celular , Chlorocebus aethiops , Microscopía por Crioelectrón , Dengue/terapia , Dengue/virología , Vacunas contra el Dengue/administración & dosificación , Vacunas contra el Dengue/farmacología , Diseño de Fármacos , Flavivirus/efectos de los fármacos , Flavivirus/inmunología , Flavivirus/patogenicidad , Infecciones por Flavivirus/virología , Humanos , Mesocricetus , Modelos Moleculares , Conformación Molecular , Mutagénesis Sitio-Dirigida , Mutación Puntual , Células Vero , Proteínas del Envoltorio Viral/metabolismo , Vacunas Virales/farmacología , Vacunas Virales/uso terapéutico , Virión/efectos de los fármacos , Virión/metabolismo
10.
NPJ Vaccines ; 6(1): 66, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963191

RESUMEN

Dengue viruses (DENV) cause an estimated 390 million infections globally. With no dengue-specific therapeutic treatment currently available, vaccination is the most promising strategy for its control. A wide range of DENV vaccines are in development, with one having already been licensed, albeit with limited distribution. We investigated the immunogenicity and protective efficacy of a chimeric virus vaccine candidate based on the insect-specific flavivirus, Binjari virus (BinJV), displaying the structural prM/E proteins of DENV (BinJ/DENV2-prME). In this study, we immunized AG129 mice with BinJ/DENV2-prME via a needle-free, high-density microarray patch (HD-MAP) delivery system. Immunization with a single, 1 µg dose of BinJ/DENV2-prME delivered via the HD-MAPs resulted in enhanced kinetics of neutralizing antibody induction when compared to needle delivery and complete protection against mortality upon virus challenge in the AG129 DENV mouse model.

11.
Clin Transl Immunology ; 10(4): e1269, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841880

RESUMEN

OBJECTIVES: Efforts to develop and deploy effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue at pace. Here, we describe rational antigen design through to manufacturability and vaccine efficacy of a prefusion-stabilised spike (S) protein, Sclamp, in combination with the licensed adjuvant MF59 'MF59C.1' (Seqirus, Parkville, Australia). METHODS: A panel recombinant Sclamp proteins were produced in Chinese hamster ovary and screened in vitro to select a lead vaccine candidate. The structure of this antigen was determined by cryo-electron microscopy and assessed in mouse immunogenicity studies, hamster challenge studies and safety and toxicology studies in rat. RESULTS: In mice, the Sclamp vaccine elicits high levels of neutralising antibodies, as well as broadly reactive and polyfunctional S-specific CD4+ and cytotoxic CD8+ T cells in vivo. In the Syrian hamster challenge model (n = 70), vaccination results in reduced viral load within the lung, protection from pulmonary disease and decreased viral shedding in daily throat swabs which correlated strongly with the neutralising antibody level. CONCLUSION: The SARS-CoV-2 Sclamp vaccine candidate is compatible with large-scale commercial manufacture, stable at 2-8°C. When formulated with MF59 adjuvant, it elicits neutralising antibodies and T-cell responses and provides protection in animal challenge models.

12.
Acta Neuropathol Commun ; 9(1): 18, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33509301

RESUMEN

BACKGROUND: Multimerization is a key process in prion-like disorders such as Alzheimer's disease (AD), since it is a requirement for self-templating tau and beta-amyloid amyloidogenesis. AT8-immunohistochemistry for hyperphosphorylated tau is currently used for the diagnosis and staging of tau pathology. Given that tau-tau interactions can occur in the absence of hyperphosphorylation or other post-translational modifications (PTMs), the direct visualization of tau multimerization could uncover early pathological tau multimers. METHODS: Here, we used bimolecular fluorescent complementation, rapamycin-dependent FKBP/FRB-tau interaction and transmission electron microscopy to prove the in vitro specificity of tau-proximity ligation assay (tau-PLA). We then analyzed MAPT KO and P301S transgenic mice, and human hippocampus and temporal isocortex of all Braak stages with tau-PLA and compared it with immunohistochemistry for the diagnostic antibody AT8, the early phosphorylation-dependent AT180, and the conformational-dependent antibody MC1. Finally, we performed proteinase-K treatment to infer the content of amyloidogenic beta-sheet fold. RESULTS: Our novel tau-proximity ligation assay (tau-PLA) directly visualized tau-tau interactions in situ, and exclusively recognized tau multimers but not monomers. It elicited no signal in MAPT KO mouse brains, but extensively labelled P301S transgenic mice and AD brain. Two groups of structures were detected, a previously unreported widespread small-sized diffuse pathology and large, neurofibrillary-like lesions. Tau-PLA-labelled diffuse pathology appeared from the earliest Braak stages, mostly unaccompanied by tangle-like tau-immunohistochemistry, being significantly more sensitive than any small-sized dot-/thread-like pathology labelled by AT180-, AT8- and MC1-immunohistochemistry in most regions quantified at stages 0-II. Tau-PLA-labelled diffuse pathology was extremely sensitive to Proteinase-K, in contrast to large lesions. CONCLUSIONS: Tau-PLA is the first method to directly visualize tau multimers both in vitro and in situ with high specificity. We find that tau multimerization appears extensively from the earliest presymptomatic Braak stages as a previously unreported type of diffuse pathology. Importantly, in our study multimerization is the earliest detectable molecular event of AD tau pathology. Our findings open a new window to the study of early tau pathology, with potential implications in early diagnosis and the design of therapeutic strategies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Animales , Enfermedades Asintomáticas , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Ovillos Neurofibrilares/patología , Multimerización de Proteína , Proteínas tau/genética
13.
Science ; 371(6525): 190-194, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33414219

RESUMEN

There are no approved flaviviral therapies and the development of vaccines against flaviruses has the potential of being undermined by antibody-dependent enhancement (ADE). The flavivirus nonstructural protein 1 (NS1) is a promising vaccine antigen with low ADE risk but has yet to be explored as a broad-spectrum therapeutic antibody target. Here, we provide the structural basis of NS1 antibody cross-reactivity through cocrystallization of the antibody 1G5.3 with NS1 proteins from dengue and Zika viruses. The 1G5.3 antibody blocks multi-flavivirus NS1-mediated cell permeability in disease-relevant cell lines, and therapeutic application of 1G5.3 reduces viremia and improves survival in dengue, Zika, and West Nile virus murine models. Finally, we demonstrate that 1G5.3 protection is independent of effector function, identifying the 1G5.3 epitope as a key site for broad-spectrum antiviral development.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Virus del Dengue/inmunología , Proteínas no Estructurales Virales/inmunología , Virus del Nilo Occidental/inmunología , Virus Zika/inmunología , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Células CHO , Línea Celular , Cricetulus , Reacciones Cruzadas , Dengue/prevención & control , Dengue/terapia , Modelos Animales de Enfermedad , Humanos , Ratones , Dominios Proteicos , Proteínas no Estructurales Virales/química , Viremia/terapia , Fiebre del Nilo Occidental/prevención & control , Fiebre del Nilo Occidental/terapia , Infección por el Virus Zika/prevención & control , Infección por el Virus Zika/terapia
14.
Brain Pathol ; 31(4): e12923, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33300249

RESUMEN

The pathological hallmark of amyotrophic lateral sclerosis (ALS) is the presence of cytoplasmic inclusions, containing C-terminal fragments of the protein TDP-43. Here, we tested the hypothesis that highly sensitive mass spectrometry with parallel reaction monitoring (MS-PRM) can generate a high-resolution map of pathological TDP-43 peptide ratios to form the basis for quantitation of abnormal C-terminal TDP-43 fragment enrichment. Human cortex and spinal cord, microscopically staged for the presence of p-TDP-43, p-tau, alpha-synuclein, and beta-amyloid pathology, were biochemically fractionated and analyzed by immunoblot and MS for the detection of full-length and truncated (disease-specific) TDP-43 peptides. This informed the synthesis of heavy isotope-labeled peptides for absolute quantification of TDP-43 by MS-PRM across 16 ALS, 8 Parkinson's, 8 Alzheimer's disease, and 8 aged control cases. We confirmed by immunoblot the previously described enrichment of pathological C-terminal fragments in ALS-TDP urea fractions. Subsequent MS analysis resolved specific TDP-43 N- and C-terminal peptides, including a novel N-terminal truncation site-specific peptide. Absolute quantification of peptides by MS-PRM showed an increased C:N-terminal TDP-43 peptide ratio in ALS-TDP brain compared to normal and disease controls. A C:N-terminal ratio >1.5 discriminated ALS from controls with a sensitivity of 100% (CI 79.6-100) and specificity of 100% (CI 68-100), and from Parkinson's and Alzheimer's disease with a sensitivity of 93% (CI 70-100) and specificity of 100% (CI 68-100). N-terminal truncation site-specific peptides were increased in ALS in line with C-terminal fragment enrichment, but were also found in a proportion of Alzheimer cases with normal C:N-terminal ratio but coexistent limbic TDP-43 neuropathological changes. In conclusion this is a novel, sensitive, and specific method to quantify the enrichment of pathological TDP-43 fragments in human brain, which could form the basis for an antibody-free assay. Our methodology has the potential to help clarify if specific pathological TDP-43 peptide signatures are associated with primary or secondary TDP-43 proteinopathies.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Humanos , Cuerpos de Inclusión/patología , Masculino , Persona de Mediana Edad , Proteinopatías TDP-43/metabolismo
15.
Acta Neuropathol Commun ; 8(1): 98, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616036

RESUMEN

Degeneration of the primary motor cortex is a defining feature of amyotrophic lateral sclerosis (ALS), which is associated with the accumulation of microscopic protein aggregates in neurons and glia. However, little is known about the quantitative burden and pattern of motor cortex proteinopathies across ALS genotypes. We combined quantitative digital image analysis with multi-level generalized linear modelling in an independent cohort of 82 ALS cases to explore the relationship between genotype, total proteinopathy load and cellular vulnerability to aggregate formation. Primary motor cortex phosphorylated (p)TDP-43 burden and microglial activation were more severe in sporadic ALS-TDP disease than C9-ALS. Oligodendroglial pTDP-43 pathology was a defining feature of ALS-TDP in sporadic ALS, C9-ALS and ALS with OPTN, HNRNPA1 or TARDBP mutations. ALS-FUS and ALS-SOD1 showed less cortical proteinopathy in relation to spinal cord pathology than ALS-TDP, where pathology was more evenly spread across the motor cortex-spinal cord axis. Neuronal pTDP-43 aggregates were rare in GAD67+ and Parvalbumin+ inhibitory interneurons, consistent with predominant accumulation in excitatory neurons. Finally, we show that cortical microglia, but not astrocytes, contain pTDP-43. Our findings suggest divergent quantitative, genotype-specific vulnerability of the ALS primary motor cortex to proteinopathies, which may have implications for our understanding of disease pathogenesis and the development of genotype-specific therapies.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Corteza Motora/patología , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/patología , Genotipo , Humanos , Médula Espinal/patología
16.
Neuroimage ; 220: 117113, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32621975

RESUMEN

Diffusion-weighted steady-state free precession (DW-SSFP) is an SNR-efficient diffusion imaging method. The improved SNR and resolution available at ultra-high field has motivated its use at 7T. However, these data tend to have severe B1 inhomogeneity, leading not only to spatially varying SNR, but also to spatially varying diffusivity estimates, confounding comparisons both between and within datasets. This study proposes the acquisition of DW-SSFP data at two-flip angles in combination with explicit modelling of non-Gaussian diffusion to address B1 inhomogeneity at 7T. Data were acquired from five fixed whole human post-mortem brains with a pair of flip angles that jointly optimize the diffusion contrast-to-noise (CNR) across the brain. We compared one- and two-flip angle DW-SSFP data using a tensor model that incorporates the full DW-SSFP Buxton signal, in addition to tractography performed over the cingulum bundle and pre-frontal cortex using a ball & sticks model. The two-flip angle DW-SSFP data produced angular uncertainty and tractography estimates close to the CNR optimal regions in the single-flip angle datasets. The two-flip angle tensor estimates were subsequently fitted using a modified DW-SSFP signal model that incorporates a gamma distribution of diffusivities. This allowed us to generate tensor maps at a single effective b-value yielding more consistent SNR across tissue, in addition to eliminating the B1 dependence on diffusion coefficients and orientation maps. Our proposed approach will allow the use of DW-SSFP at 7T to derive diffusivity estimates that have greater interpretability, both within a single dataset and between experiments.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Humanos
17.
Neurooncol Adv ; 1(1): vdz008, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31608327

RESUMEN

BACKGROUND: The molecular genetic classification of gliomas, particularly the identification of isocitrate dehydrogenase (IDH) mutations, is critical for clinical and surgical decision-making. Raman spectroscopy probes the unique molecular vibrations of a sample to accurately characterize its molecular composition. No sample processing is required allowing for rapid analysis of tissue. The aim of this study was to evaluate the ability of Raman spectroscopy to rapidly identify the common molecular genetic subtypes of diffuse glioma in the neurosurgical setting using fresh biopsy tissue. In addition, classification models were built using cryosections, formalin-fixed paraffin-embedded (FFPE) sections and LN-18 (IDH-mutated and wild-type parental cell) glioma cell lines. METHODS: Fresh tissue, straight from neurosurgical theatres, underwent Raman analysis and classification into astrocytoma, IDH-wild-type; astrocytoma, IDH-mutant; or oligodendroglioma. The genetic subtype was confirmed on a parallel section using immunohistochemistry and targeted genetic sequencing. RESULTS: Fresh tissue samples from 62 patients were collected (36 astrocytoma, IDH-wild-type; 21 astrocytoma, IDH-mutated; 5 oligodendroglioma). A principal component analysis fed linear discriminant analysis classification model demonstrated 79%-94% sensitivity and 90%-100% specificity for predicting the 3 glioma genetic subtypes. For the prediction of IDH mutation alone, the model gave 91% sensitivity and 95% specificity. Seventy-nine cryosections, 120 FFPE samples, and LN18 cells were also successfully classified. Meantime for Raman data collection was 9.5 min in the fresh tissue samples, with the process from intraoperative biopsy to genetic classification taking under 15 min. CONCLUSION: These data demonstrate that Raman spectroscopy can be used for the rapid, intraoperative, classification of gliomas into common genetic subtypes.

18.
J Proteome Res ; 18(4): 1787-1795, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30768908

RESUMEN

While nearly comprehensive proteome coverage can be achieved from bulk tissue or cultured cells, the data usually lacks spatial resolution. As a result, tissue based proteomics averages protein abundance across multiple cell types and/or localizations. With proteomics platforms lacking sensitivity and throughput to undertake deep single-cell proteome studies in order to resolve spatial or cell type dependent protein expression gradients within tissue, proteome analysis has been combined with sorting techniques to enrich for certain cell populations. However, the spatial resolution and context is lost after cell sorting. Here, we report an optimized method for the proteomic analysis of neurons isolated from post-mortem human brain by laser capture microdissection (LCM). We tested combinations of sample collection methods, lysis buffers and digestion methods to maximize the number of identifications and quantitative performance, identifying 1500 proteins from 60 000 µm2 of 10 µm thick cerebellar molecular layer with excellent reproducibility. To demonstrate the ability of our workflow to resolve cell type specific proteomes within human brain tissue, we isolated sets of individual Betz and Purkinje cells. Both neuronal cell types are involved in motor coordination and were found to express highly specific proteomes to a depth of 2800 to 3600 proteins.


Asunto(s)
Química Encefálica/fisiología , Proteoma , Proteómica/métodos , Encéfalo/metabolismo , Humanos , Captura por Microdisección con Láser/métodos , Proteoma/análisis , Proteoma/química , Proteoma/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
Neurobiol Dis ; 121: 148-162, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30290270

RESUMEN

Mutations in the gene encoding the RNA-binding protein TDP-43 cause amyotrophic lateral sclerosis (ALS), clinically and pathologically indistinguishable from the majority of 'sporadic' cases of ALS, establishing altered TDP-43 function and distribution as a primary mechanism of neurodegeneration. Transgenic mouse models in which TDP-43 is overexpressed only partially recapitulate the key cellular pathology of human ALS, but may also lead to non-specific toxicity. To avoid the potentially confounding effects of overexpression, and to maintain regulated spatio-temporal and cell-specific expression, we generated mice in which an 80 kb genomic fragment containing the intact human TDP-43 locus (either TDP-43WT or TDP-43M337V) and its regulatory regions was integrated into the Rosa26 (Gt(ROSA26)Sor) locus in a single copy. At 3 months of age, TDP-43M337V mice are phenotypically normal but by around 6 months develop progressive motor function deficits associated with loss of neuromuscular junction integrity, leading to a reduced lifespan. RNA sequencing shows that widespread mis-splicing is absent prior to the development of a motor phenotype, though differential expression analysis reveals a distinct transcriptional profile in pre-symptomatic TDP-43M337V spinal cords. Despite the presence of clear motor abnormalities, there was no evidence of TDP-43 cytoplasmic aggregation in vivo at any timepoint. In primary embryonic spinal motor neurons and in embryonic stem cell (ESC)-derived motor neurons, mutant TDP-43 undergoes cytoplasmic mislocalisation, and is associated with altered stress granule assembly and dynamics. Overall, this mouse model provides evidence that ALS may arise through acquired TDP-43 toxicity associated with defective stress granule function. The normal phenotype until 6 months of age can facilitate the study of early pathways underlying ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Neuronas Motoras/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Fuerza de la Mano , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/patología , Mutación , Unión Neuromuscular/patología , Proteínas de Unión al ARN/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...