Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Immunol ; 23(4): 543-555, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35288714

RESUMEN

Despite the success of the BNT162b2 mRNA vaccine, the immunological mechanisms that underlie its efficacy are poorly understood. Here we analyzed the innate and adaptive responses to BNT162b2 in mice, and show that immunization stimulated potent antibody and antigen-specific T cell responses, as well as strikingly enhanced innate responses after secondary immunization, which was concurrent with enhanced serum interferon (IFN)-γ levels 1 d following secondary immunization. Notably, we found that natural killer cells and CD8+ T cells in the draining lymph nodes are the major producers of this circulating IFN-γ. Analysis of knockout mice revealed that induction of antibody and T cell responses to BNT162b2 was not dependent on signaling via Toll-like receptors 2, 3, 4, 5 and 7 nor inflammasome activation, nor the necroptosis or pyroptosis cell death pathways. Rather, the CD8+ T cell response induced by BNT162b2 was dependent on type I interferon-dependent MDA5 signaling. These results provide insights into the molecular mechanisms by which the BNT162b2 vaccine stimulates immune responses.


Asunto(s)
Linfocitos T CD8-positivos , Vacunas , Inmunidad Adaptativa , Animales , Vacuna BNT162 , Humanos , Inmunidad Innata , Ratones , Vacunas Sintéticas , Vacunas de ARNm
3.
Nat Commun ; 13(1): 549, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087093

RESUMEN

Adjuvants hold great potential in enhancing vaccine efficacy, making the understanding and improving of adjuvants critical goals in vaccinology. The TLR7/8 agonist, 3M-052, induces long-lived humoral immunity in non-human primates and is currently being evaluated in human clinical trials. However, the innate mechanisms of 3M-052 have not been fully characterized. Here, we perform flow cytometry, single cell RNA-seq and ATAC-seq to profile the kinetics, transcriptomics and epigenomics of innate immune cells in murine draining lymph nodes following 3M-052-Alum/Ovalbumin immunization. We find that 3M-052-Alum/OVA induces a robust antiviral and interferon gene program, similar to the yellow fever vaccine, which is known to confer long-lasting protection. Activation of myeloid cells in dLNs persists through day 28 and single cell analysis reveals putative TF-gene regulatory programs in distinct myeloid cells and heterogeneity of monocytes. This study provides a comprehensive characterization of the transcriptomics and epigenomics of innate populations in the dLNs after vaccination.


Asunto(s)
Adyuvantes Inmunológicos/química , Inmunidad Humoral/inmunología , Inmunidad Innata , Vacunas Atenuadas/inmunología , Inmunidad Adaptativa , Adyuvantes Inmunológicos/farmacología , Compuestos de Alumbre , Animales , Anticuerpos Antivirales/inmunología , Epigenómica , Femenino , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunización , Glicoproteínas de Membrana/agonistas , Ratones , Ratones Endogámicos C57BL , Monocitos , Células Mieloides , Ovalbúmina , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Vacunación
5.
J Am Med Inform Assoc ; 28(11): 2325-2335, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34529084

RESUMEN

OBJECTIVE: Ulcerative colitis (UC) is a chronic inflammatory disorder with limited effective therapeutic options for long-term treatment and disease maintenance. We hypothesized that a multi-cohort analysis of independent cohorts representing real-world heterogeneity of UC would identify a robust transcriptomic signature to improve identification of FDA-approved drugs that can be repurposed to treat patients with UC. MATERIALS AND METHODS: We performed a multi-cohort analysis of 272 colon biopsy transcriptome samples across 11 publicly available datasets to identify a robust UC disease gene signature. We compared the gene signature to in vitro transcriptomic profiles induced by 781 FDA-approved drugs to identify potential drug targets. We used a retrospective cohort study design modeled after a target trial to evaluate the protective effect of predicted drugs on colectomy risk in patients with UC from the Stanford Research Repository (STARR) database and Optum Clinformatics DataMart. RESULTS: Atorvastatin treatment had the highest inverse-correlation with the UC gene signature among non-oncolytic FDA-approved therapies. In both STARR (n = 827) and Optum (n = 7821), atorvastatin intake was significantly associated with a decreased risk of colectomy, a marker of treatment-refractory disease, compared to patients prescribed a comparator drug (STARR: HR = 0.47, P = .03; Optum: HR = 0.66, P = .03), irrespective of age and length of atorvastatin treatment. DISCUSSION & CONCLUSION: These findings suggest that atorvastatin may serve as a novel therapeutic option for ameliorating disease in patients with UC. Importantly, we provide a systematic framework for integrating publicly available heterogeneous molecular data with clinical data at a large scale to repurpose existing FDA-approved drugs for a wide range of human diseases.


Asunto(s)
Colitis Ulcerosa , Atorvastatina/uso terapéutico , Colectomía , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Colitis Ulcerosa/cirugía , Reposicionamiento de Medicamentos , Humanos , Estudios Retrospectivos
6.
Nature ; 596(7872): 410-416, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34252919

RESUMEN

The emergency use authorization of two mRNA vaccines in less than a year from the emergence of SARS-CoV-2 represents a landmark in vaccinology1,2. Yet, how mRNA vaccines stimulate the immune system to elicit protective immune responses is unknown. Here we used a systems vaccinology approach to comprehensively profile the innate and adaptive immune responses of 56 healthy volunteers who were vaccinated with the Pfizer-BioNTech mRNA vaccine (BNT162b2). Vaccination resulted in the robust production of neutralizing antibodies against the wild-type SARS-CoV-2 (derived from 2019-nCOV/USA_WA1/2020) and, to a lesser extent, the B.1.351 strain, as well as significant increases in antigen-specific polyfunctional CD4 and CD8 T cells after the second dose. Booster vaccination stimulated a notably enhanced innate immune response as compared to primary vaccination, evidenced by (1) a greater frequency of CD14+CD16+ inflammatory monocytes; (2) a higher concentration of plasma IFNγ; and (3) a transcriptional signature of innate antiviral immunity. Consistent with these observations, our single-cell transcriptomics analysis demonstrated an approximately 100-fold increase in the frequency of a myeloid cell cluster enriched in interferon-response transcription factors and reduced in AP-1 transcription factors, after secondary immunization. Finally, we identified distinct innate pathways associated with CD8 T cell and neutralizing antibody responses, and show that a monocyte-related signature correlates with the neutralizing antibody response against the B.1.351 variant. Collectively, these data provide insights into the immune responses induced by mRNA vaccination and demonstrate its capacity to prime the innate immune system to mount a more potent response after booster immunization.


Asunto(s)
Inmunidad Adaptativa , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Inmunidad Innata , Linfocitos T/inmunología , Vacunología , Adulto , Anciano , Anticuerpos Neutralizantes/inmunología , Autoanticuerpos/inmunología , Vacuna BNT162 , Vacunas contra la COVID-19/administración & dosificación , Femenino , Humanos , Inmunización Secundaria , Masculino , Persona de Mediana Edad , Análisis de la Célula Individual , Glicoproteína de la Espiga del Coronavirus/inmunología , Transcripción Genética , Transcriptoma/genética , Adulto Joven
7.
Res Sq ; 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-34013244

RESUMEN

The emergency use authorization of two COVID-19 mRNA vaccines in less than a year since the emergence of SARS-CoV-2, represents a landmark in vaccinology1,2. Yet, how mRNA vaccines stimulate the immune system to elicit protective immune responses is unknown. Here we used a systems biological approach to comprehensively profile the innate and adaptive immune responses in 56 healthy volunteers vaccinated with the Pfizer-BioNTech mRNA vaccine. Vaccination resulted in robust production of neutralizing antibodies (nAbs) against the parent strain and the variant of concern, B.1.351, but no induction of autoantibodies, and significant increases in antigen-specific polyfunctional CD4 and CD8 T cells after the second dose. The innate response induced within the first 2 days of booster vaccination was profoundly increased, relative to the response at corresponding times after priming. Thus, there was a striking increase in the: (i) frequency of CD14+CD16+ inflammatory monocytes; (ii) concentration of IFN- y in the plasma, which correlated with enhanced pSTAT3 and pSTAT1 levels in monocytes and T cells; and (iii) transcriptional signatures of innate responses characteristic of antiviral vaccine responses against pandemic influenza, HIV and Ebola, within 2 days following booster vaccination compared to primary vaccination. Consistent with these observations, single-cell transcriptomics analysis of 242,479 leukocytes demonstrated a ~100-fold increase in the frequency of a myeloid cluster, enriched in a signature of interferon-response transcription factors (TFs) and reduced in AP-1 TFs, one day after secondary immunization, at day 21. Finally, we delineated distinct molecular pathways of innate activation that correlate with CD8 T cell and nAb responses and identified an early monocyte-related signature that was associated with the breadth of the nAb response against the B1.351 variant strain. Collectively, these data provide insights into the immune responses induced by mRNA vaccines and demonstrate their capacity to stimulate an enhanced innate response following booster immunization.

8.
Pac Symp Biocomput ; 26: 297-308, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33691026

RESUMEN

An early biomarker would transform our ability to screen and treat patients with cancer. The large amount of multi-scale molecular data in public repositories from various cancers provide unprecedented opportunities to find such a biomarker. However, despite identification of numerous molecular biomarkers using these public data, fewer than 1% have proven robust enough to translate into clinical practice. One of the most important factors affecting the successful translation to clinical practice is lack of real-world patient population heterogeneity in the discovery process. Almost all biomarker studies analyze only a single cohort of patients with the same cancer using a single modality. Recent studies in other diseases have demonstrated the advantage of leveraging biological and technical heterogeneity across multiple independent cohorts to identify robust disease biomarkers. Here we analyzed 17149 samples from patients with one of 23 cancers that were profiled using either DNA methylation, bulk and single-cell gene expression, or protein expression in tumor and serum. First, we analyzed DNA methylation profiles of 9855 samples across 23 cancers from The Cancer Genome Atlas (TCGA). We then examined the gene expression profile of the most significantly hypomethylated gene, KRT8, in 6781 samples from 57 independent microarray datasets from NCBI GEO. KRT8 was significantly over-expressed across cancers except colon cancer (summary effect size=1.05; p < 0.0001). Further, single-cell RNAseq analysis of 7447 single cells from lung tumors showed that genes that significantly correlated with KRT8 (p < 0.05) were involved in p53-related pathways. Immunohistochemistry in tumor biopsies from 294 patients with lung cancer showed that high protein expression of KRT8 is a prognostic marker of poor survival (HR = 1.73, p = 0.01). Finally, detectable KRT8 in serum as measured by ELISA distinguished patients with pancreatic cancer from healthy controls with an AUROC=0.94. In summary, our analysis demonstrates that KRT8 is (1) differentially expressed in several cancers across all molecular modalities and (2) may be useful as a biomarker to identify patients that should be further tested for cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Pulmonares , Biomarcadores de Tumor/genética , Estudios de Cohortes , Biología Computacional , Metilación de ADN , Humanos , Queratina-8/genética , Queratina-8/metabolismo , Neoplasias Pulmonares/genética , Análisis de Supervivencia
9.
Nat Med ; 26(6): 932-940, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32393800

RESUMEN

Recent efforts toward an HIV vaccine focus on inducing broadly neutralizing antibodies, but eliciting both neutralizing antibodies (nAbs) and cellular responses may be superior. Here, we immunized macaques with an HIV envelope trimer, either alone to induce nAbs, or together with a heterologous viral vector regimen to elicit nAbs and cellular immunity, including CD8+ tissue-resident memory T cells. After ten vaginal challenges with autologous virus, protection was observed in both vaccine groups at 53.3% and 66.7%, respectively. A nAb titer >300 was generally associated with protection but in the heterologous viral vector + nAb group, titers <300 were sufficient. In this group, protection was durable as the animals resisted six more challenges 5 months later. Antigen stimulation of T cells in ex vivo vaginal tissue cultures triggered antiviral responses in myeloid and CD4+ T cells. We propose that cellular immune responses reduce the threshold of nAbs required to confer superior and durable protection.


Asunto(s)
Anticuerpos Neutralizantes/efectos de los fármacos , Anticuerpos Antivirales/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Productos del Gen gag/genética , Inmunidad Celular/efectos de los fármacos , Vacunas contra el SIDAS/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Productos del Gen gag/inmunología , Vectores Genéticos , Inmunidad Celular/inmunología , Inmunidad Heteróloga , Inmunogenicidad Vacunal , Memoria Inmunológica/inmunología , Macaca mulatta , Membrana Mucosa , Vagina
10.
Lancet Respir Med ; 7(6): 497-508, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30935881

RESUMEN

BACKGROUND: There is an urgent need for biomarkers to better stratify patients with idiopathic pulmonary fibrosis by risk for lung transplantation allocation who have the same clinical presentation. We aimed to investigate whether a specific immune cell type from patients with idiopathic pulmonary fibrosis could identify those at higher risk of poor outcomes. We then sought to validate our findings using cytometry and electronic health records. METHODS: We first did a discovery analysis with transcriptome data from the Gene Expression Omnibus at the National Center for Biotechnology Information for 120 peripheral blood mononuclear cell (PBMC) samples of patients with idiopathic pulmonary fibrosis. We estimated percentages of 13 immune cell types using statistical deconvolution, and investigated the association of these cell types with transplant-free survival. We validated these results using PBMC samples from patients with idiopathic pulmonary fibrosis in two independent cohorts (COMET and Yale). COMET profiled monocyte counts in 45 patients with idiopathic pulmonary fibrosis from March 12, 2010, to March 10, 2011, using flow cytometry; we tested if increased monocyte count was associated with the primary outcome of disease progression. In the Yale cohort, 15 patients with idiopathic pulmonary fibrosis (with five healthy controls) were classed as high risk or low risk from April 28, 2014, to Aug 20, 2015, using a 52-gene signature, and we assessed whether monocyte percentage (measured by cytometry by time of flight) was higher in high-risk patients. We then examined complete blood count values in the electronic health records (EHR) of 45 068 patients with idiopathic pulmonary fibrosis, systemic sclerosis, hypertrophic cardiomyopathy, or myelofibrosis from Stanford (Jan 01, 2008, to Dec 31, 2015), Northwestern (Feb 15, 2001 to July 31, 2017), Vanderbilt (Jan 01, 2008, to Dec 31, 2016), and Optum Clinformatics DataMart (Jan 01, 2004, to Dec 31, 2016) cohorts, and examined whether absolute monocyte counts of 0·95 K/µL or greater were associated with all-cause mortality in these patients. FINDINGS: In the discovery analysis, estimated CD14+ classical monocyte percentages above the mean were associated with shorter transplant-free survival times (hazard ratio [HR] 1·82, 95% CI 1·05-3·14), whereas higher percentages of T cells and B cells were not (0·97, 0·59-1·66; and 0·78, 0·45-1·34 respectively). In two validation cohorts (COMET trial and the Yale cohort), patients with higher monocyte counts were at higher risk for poor outcomes (COMET Wilcoxon p=0·025; Yale Wilcoxon p=0·049). Monocyte counts of 0·95 K/µL or greater were associated with mortality after adjusting for forced vital capacity (HR 2·47, 95% CI 1·48-4·15; p=0·0063), and the gender, age, and physiology index (HR 2·06, 95% CI 1·22-3·47; p=0·0068) across the COMET, Stanford, and Northwestern datasets). Analysis of medical records of 7459 patients with idiopathic pulmonary fibrosis showed that patients with monocyte counts of 0·95 K/µL or greater were at increased risk of mortality with lung transplantation as a censoring event, after adjusting for age at diagnosis and sex (Stanford HR=2·30, 95% CI 0·94-5·63; Vanderbilt 1·52, 1·21-1·89; Optum 1·74, 1·33-2·27). Likewise, higher absolute monocyte count was associated with shortened survival in patients with hypertrophic cardiomyopathy across all three cohorts, and in patients with systemic sclerosis or myelofibrosis in two of the three cohorts. INTERPRETATION: Monocyte count could be incorporated into the clinical assessment of patients with idiopathic pulmonary fibrosis and other fibrotic disorders. Further investigation into the mechanistic role of monocytes in fibrosis might lead to insights that assist the development of new therapies. FUNDING: Bill & Melinda Gates Foundation, US National Institute of Allergy and Infectious Diseases, and US National Library of Medicine.


Asunto(s)
Fibrosis Pulmonar Idiopática/sangre , Recuento de Leucocitos/estadística & datos numéricos , Leucocitos Mononucleares , Medición de Riesgo/métodos , Adulto , Biomarcadores/sangre , Femenino , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/cirugía , Trasplante de Pulmón , Masculino , Persona de Mediana Edad , Selección de Paciente , Valor Predictivo de las Pruebas , Modelos de Riesgos Proporcionales , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...