Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 9174, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29907778

RESUMEN

A prerequisite to utilize the full potential of structural heterogeneities for improving the room-temperature plastic deformation of bulk metallic glasses (BMGs) is to understand their interaction with the mechanism of shear band formation and propagation. This task requires the ability to artificially create heterogeneous microstructures with controlled morphology and orientation. Here, we analyze the effect of the designed heterogeneities generated by imprinting on the tensile mechanical behavior of the Zr52.5Ti5Cu18Ni14.5Al10 BMG by using experimental and computational methods. The imprinted material is elastically heterogeneous and displays anisotropic mechanical properties: strength and ductility increase with increasing the loading angle between imprints and tensile direction. This behavior occurs through shear band branching and their progressive rotation. Molecular dynamics and finite element simulations indicate that shear band branching and rotation originates at the interface between the heterogeneities, where the characteristic atomistic mechanism responsible for shear banding in a homogeneous glass is perturbed.

2.
Sci Rep ; 8(1): 6484, 2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29692428

RESUMEN

Strengthening of alloys can be efficiently attained by the creation of harmonic structures: bimodal microstructures generated by controlled milling of the particulate precursors, which consist of coarse-grained cores embedded in a continuous fine-grained matrix. Here, we extend the concept of harmonic structures to metal matrix composites and analyze the effectiveness of such bimodal microstructures for strengthening composites consisting of a pure Al matrix reinforced with Fe3Al particles. Preferential microstructural refinement limited to the surface of the particles, where the Fe3Al phase is progressively fragmented, occurs during ball milling of the Al-Fe3Al composite powder mixtures. The refined surface becomes the continuous fine-grained matrix that encloses macro-regions with coarser reinforcing particles in the harmonic composites synthesized during subsequent powder consolidation. The generation of the bimodal microstructure has a significant influence on the strength of the harmonic composites, which exceeds that of the conventional material by a factor of 2 while retaining considerable plastic deformation. Finally, modeling of the mechanical properties indicates that the strength of the harmonic composites can be accurately described by taking into account both the volume fraction of reinforcement and the characteristic microstructural features describing the harmonic structure.

3.
Phys Rev Lett ; 119(19): 195503, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29219492

RESUMEN

The ability to control the plastic deformation of amorphous metals is based on the capacity to influence the percolation of the shear transformation zones (STZs). Despite the recent research progress, the mechanism of STZ self-assembly has so far remained elusive. Here, we identify the structural perturbation generated by an STZ in the surrounding material and show how such a perturbation triggers the activation of the neighboring STZ. The mechanism is based on the autocatalytic generation of successive strong strain and rotation fields, leading to STZ percolation and, ultimately, to the formation of a shear band.

4.
Sci Rep ; 6: 33375, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27650956

RESUMEN

Hexagonal Aluminium nitride (h-AlN) is an important wide-bandgap semiconductor material which is conventionally fabricated by high temperature carbothermal reduction of alumina under toxic ammonia atmosphere. Here we report a simple, low cost and potentially scalable mechanochemical procedure for the green synthesis of nanostructured h-AlN from a powder mixture of Aluminium and melamine precursors. A combination of experimental and theoretical techniques has been employed to provide comprehensive mechanistic insights on the reactivity of melamine, solid state metal-organic interactions and the structural transformation of Al to h-AlN under non-equilibrium ball milling conditions. The results reveal that melamine is adsorbed through the amine groups on the Aluminium surface due to the long-range van der Waals forces. The high energy provided by milling leads to the deammoniation of melamine at the initial stages followed by the polymerization and formation of a carbon nitride network, by the decomposition of the amine groups and, finally, by the subsequent diffusion of nitrogen into the Aluminium structure to form h-AlN.

5.
Mater Sci Eng C Mater Biol Appl ; 33(4): 2280-7, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23498259

RESUMEN

Porous ß-type non-toxic Ti40Nb alloy was prepared by compaction of mechanically alloyed powder mixed with NaCl or Mg particles as space-holder material. The compacts with porosity of 36-80% demonstrated a very low Young's modulus of ~1.5-3 GPa and compression strength of ~10-35 MPa, which is suitable for potential implant material application. Porous samples were electrochemically covered with hydroxyapatite. The influence of the deposition time and of the electrolyte concentrations on the morphology of the hydroxyapatite coating was studied. It is demonstrated that a homogenous coating of hydroxyapatite crystals with different shape and size can be obtained on the surface of the porous samples.


Asunto(s)
Aleaciones/química , Tecnología Biomédica/métodos , Materiales Biocompatibles Revestidos/química , Durapatita/química , Módulo de Elasticidad , Galvanoplastia/métodos , Fuerza Compresiva , Magnesio/química , Microscopía Electrónica de Rastreo , Porosidad , Cloruro de Sodio/química , Espectrometría por Rayos X , Difracción de Rayos X , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA