Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
IEEE Access ; 12: 62511-62525, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872754

RESUMEN

Physiological closed-loop controlled (PCLC) medical devices, such as those designed for blood pressure regulation, can be tested for safety and efficacy in real-world clinical settings. However, relying solely on limited animal and clinical studies may not capture the diverse range of physiological conditions. Credible mathematical models can complement these studies by allowing the testing of the device against simulated patient scenarios. This research involves the development and validation of a low-order lumped-parameter mathematical model of the cardiovascular system's response to fluid perturbation. The model takes rates of hemorrhage and fluid infusion as inputs and provides hematocrit and blood volume, heart rate, stroke volume, cardiac output and mean arterial blood pressure as outputs. The model was calibrated using data from 27 sheep subjects, and its predictive capability was evaluated through a leave-one-out cross-validation procedure, followed by independent validation using 12 swine subjects. Our findings showed small model calibration error against the training dataset, with the normalized root-mean-square error (NRMSE) less than 10% across all variables. The mathematical model and virtual patient cohort generation tool demonstrated a high level of predictive capability and successfully generated a sufficient number of subjects that closely resembled the test dataset. The average NRMSE for the best virtual subject, across two distinct samples of virtual subjects, was below 12.7% and 11.9% for the leave-one-out cross-validation and independent validation dataset. These findings suggest that the model and virtual cohort generator are suitable for simulating patient populations under fluid perturbation, indicating their potential value in PCLC medical device evaluation.

2.
Biomed Opt Express ; 15(4): 2308-2327, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633081

RESUMEN

Pulse oximetry represents a ubiquitous clinical application of optics in modern medicine. Recent studies have raised concerns regarding the potential impact of confounders, such as variable skin pigmentation and perfusion, on blood oxygen saturation measurement accuracy in pulse oximeters. Tissue-mimicking phantom testing offers a low-cost, well-controlled solution for characterizing device performance and studying potential error sources, which may thus reduce the need for costly in vivo trials. The purpose of this study was to develop realistic phantom-based test methods for pulse oximetry. Material optical and mechanical properties were reviewed, selected, and tuned for optimal biological relevance, e.g., oxygenated tissue absorption and scattering, strength, elasticity, hardness, and other parameters representing the human finger's geometry and composition, such as blood vessel size and distribution, and perfusion. Relevant anatomical and physiological properties are summarized and implemented toward the creation of a preliminary finger phantom. To create a preliminary finger phantom, we synthesized a high-compliance silicone matrix with scatterers for embedding flexible tubing and investigated the addition of these scatterers to novel 3D printing resins for optical property control without altering mechanical stability, streamlining the production of phantoms with biologically relevant characteristics. Phantom utility was demonstrated by applying dynamic, pressure waveforms to produce tube volume change and resultant photoplethysmography (PPG) signals. 3D printed phantoms achieved more biologically relevant conditions compared to molded phantoms. These preliminary results indicate that the phantoms show strong potential to be developed into tools for evaluating pulse oximetry performance. Gaps, recommendations, and strategies are presented for continued phantom development.

3.
IEEE Trans Biomed Eng ; PP2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587945

RESUMEN

OBJECTIVE: The aim of this work is to demonstrate the performance of the ECG noise extraction tool (ECGNExT) which provides estimates of ECG noise that are not significantly different from the inherent noise in an ECG generated by motion artifacts and other sources. In addition, this paper elaborates on use of ECGNExT in an algorithm evaluation context comparing two QRS detection algorithms. METHODS: 140 simultaneous pairs of clean ECGs and ECGs corrupted with motion-induced noise from 29 participants under five different and separate motion conditions were collected and analyzed. Estimates of the noise component of the ECGs recorded with noise were obtained using ECGNExT and were then added to the clean ECGs yielding estimated ECGs with noise. Root mean squared error (RMSE) between the recorded and estimated ECGs with noise was calculated for temporal comparison, and band powers of the signals were calculated for spectral comparison. RESULTS: A t-test revealed that the mean RMSE < 150-microvolts with p-value < 0.001 and, and equivalence tests showed that the band powers of the two ECGs were statistically equivalent with . CONCLUSION: ECGNExT can reliably estimate the underlying ECG noise while preserving temporal and spectral features. SIGNIFICANCE: We previously proposed ECGNExT as a component of ECG analysis algorithm testing during noise conditions and reported its performance based on simulated ECG data. This work provides additional support of the performance and functionality of the ECGNExT algorithm from a study with pairs of simultaneously recorded ECGs with and without noise from human subjects.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38083445

RESUMEN

Labeled ECG data in diseased state are, however, relatively scarce due to various concerns including patient privacy and low prevalence. We propose the first study in its kind that synthesizes atrial fibrillation (AF)-like ECG signals from normal ECG signals using the AFE-GAN, a generative adversarial network. Our AFE-GAN adjusts both beat morphology and rhythm variability when generating the atrial fibrillation-like ECG signals. Two publicly available arrhythmia detectors classified 72.4% and 77.2% of our generated signals as AF in a four-class (normal, AF, other abnormal, noisy) classification. This work shows the feasibility to synthesize abnormal ECG signals from normal ECG signals.Clinical significance - The AF ECG signal generated with our AFE-GAN has the potential to be used as training materials for health practitioners or be used as class-balance supplements for training automatic AF detectors.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico , Electrocardiografía , Trastorno del Sistema de Conducción Cardíaco
5.
Comput Biol Med ; 160: 106979, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37167657

RESUMEN

Pulse contour cardiac output monitoring systems allow real-time and continuous estimation of hemodynamic variables such as cardiac output (CO) and stroke volume variation (SVV) by analysis of arterial blood pressure waveforms. However, evaluating the performance of CO monitoring systems to measure the small variations in these variables sometimes used to guide fluid therapy is a challenge due to limitations in clinical reference methods. We developed a non-clinical database as a tool for assessing the dynamic attributes of pressure-based CO monitoring systems, including CO response time and CO and SVV resolutions. We developed a mock circulation loop (MCL) that can simulate rapid changes in different parameters, such as CO and SVV. The MCL was configured to simulate three different states (normovolemic, cardiogenic shock, and hyperdynamic) representing a range of flow and pressure conditions. For each state, we simulated stepwise changes in the MCL flow and collected datasets for characterizing pressure-based CO systems. Nine datasets were generated that contain hours of peripheral pressure, central flow and pressure waveforms. The MCL-generated database is provided open access as a tool for evaluating dynamic characteristics of pressure-based CO algorithms and systems in detecting variations in CO and SVV indices. In an example application of the database, a CO response time of 10 s, CO and SVV resolutions with lower and upper limits of (-9.1%, 8.4%) and (-5.0%, 3.8%), respectively, were determined for a pressure-based CO benchtop system. This tool will support a more comprehensive assessment of pressure-based CO monitoring systems and algorithms.


Asunto(s)
Hemodinámica , Respiración Artificial , Presión Sanguínea/fisiología , Gasto Cardíaco/fisiología , Fluidoterapia/métodos , Monitoreo Fisiológico/métodos , Respiración Artificial/métodos , Volumen Sistólico/fisiología , Humanos
6.
IEEE Trans Biomed Eng ; 70(5): 1565-1574, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36383592

RESUMEN

OBJECTIVE: To develop a high-fidelity mathematical model intended to replicate the cardiovascular (CV) responses of a critically ill patient to vasoplegic shock-induced hypotension and vasopressor therapy. METHODS: The mathematical model consists of a lumped-parameter CV physiology model with baroreflex modulation feedback and a phenomenological dynamic dose-response model of a vasopressor. The adequacy of the proposed mathematical model was investigated using an experimental dataset acquired from 10 pigs receiving phenylephrine (PHP) therapy after vasoplegic shock induced via sodium nitroprusside (SNP). RESULTS: Upon calibration, the mathematical model could (i) faithfully replicate the effects of PHP on dynamic changes in blood pressure (BP), cardiac output (CO), and systemic vascular resistance (SVR) (root-mean-squared errors between measured and calibrated mathematical responses: mean arterial BP 2.5+/-1.0 mmHg, CO 0.2+/-0.1 lpm, SVR 2.4+/-1.5 mmHg/lpm; r value: mean arterial BP 0.96+/-0.01, CO 0.65+/-0.45, TPR 0.92+/-0.10) and (ii) predict physiologically plausible behaviors of unmeasured internal CV variables as well as secondary baroreflex modulation effects. CONCLUSION: This mathematical model is perhaps the first of its kind that can comprehensively replicate both primary (i.e., direct) and secondary (i.e., baroreflex modulation) effects of a vasopressor drug on an array of CV variables, rendering it ideally suited to pre-clinical virtual evaluation of the safety and efficacy of closed-loop control algorithms for autonomous vasopressor administration once it is extensively validated. SIGNIFICANCE: This mathematical model architecture incorporating both direct and baroreflex modulation effects may generalize to serve as part of an effective platform for high-fidelity in silico simulation of CV responses to vasopressors during vasoplegic shock.


Asunto(s)
Barorreflejo , Vasoconstrictores , Animales , Porcinos , Presión Sanguínea/fisiología , Vasoconstrictores/farmacología , Barorreflejo/fisiología , Simulación por Computador , Modelos Cardiovasculares
7.
Biosensors (Basel) ; 12(8)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36004994

RESUMEN

Cardiovascular disease is the leading cause of death globally. To provide continuous monitoring of blood pressure (BP), a parameter which has shown to improve health outcomes when monitored closely, many groups are trying to measure blood pressure via noninvasive photoplethysmography (PPG). However, the PPG waveform is subject to variation as a function of patient-specific and device factors and thus a platform to enable the evaluation of these factors on the PPG waveform and subsequent hemodynamic parameter prediction would enable device development. Here, we present a computational workflow that combines Monte Carlo modeling (MC), gaussian combination, and additive noise to create synthetic dataset of volar fingertip PPG waveforms representative of a diverse cohort. First, MC is used to determine PPG amplitude across age, skin tone, and device wavelength. Then, gaussian combination generates accurate PPG waveforms, and signal processing enables data filtration and feature extraction. We improve the limitations of current synthetic PPG frameworks by enabling inclusion of physiological and anatomical effects from body site, skin tone, and age. We then show how the datasets can be used to examine effects of device characteristics such as wavelength, analog to digital converter specifications, filtering method, and feature extraction. Lastly, we demonstrate the use of this framework to show the insensitivity of a support vector machine predictive algorithm compared to a neural network and bagged trees algorithm.


Asunto(s)
Fotopletismografía , Procesamiento de Señales Asistido por Computador , Simulación por Computador , Hemodinámica , Humanos , Fotopletismografía/métodos , Flujo de Trabajo
8.
Cardiovasc Eng Technol ; 13(2): 279-290, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34472042

RESUMEN

PURPOSE: Mock circulatory loops (MCLs) can reproducibly generate physiologically relevant pressures and flows for cardiovascular device testing. These systems have been extensively used to characterize the performance of therapeutic cardiac devices, but historically MCLs have had limited use for assessing patient monitoring systems. Here, we adapted an MCL to include peripheral components and evaluated its utility for qualitative and quantitative benchtop testing of hemodynamic monitoring devices. METHODS: An MCL was designed to simulate three physiological hemodynamic states: normovolemia, cardiogenic shock, and hyperdynamic circulation. The system was assessed for stability in pressure and flow values over time, repeatability, waveform morphology, and systemic-peripheral pressure relationships. RESULTS: For each condition, cardiac output was controlled to the nearest 0.2 L/min, and flow rate and mean arterial pressure remained stable and repeatable over a 60-s period (n = 5, standard deviation of ± 0.1 L/min and ± 0.84 mmHg, respectively). Transfer function analyses showed that the systemic-peripheral relationships could be adequately manipulated. The results from this MCL were comparable to those from other published MCLs and computational simulations. However, resolving current limitations of the system would further improve its utility. Three pulse contour analysis algorithms were applied to the pressure and flow data from the MCL to demonstrate the potential role of MCLs in characterizing hemodynamic monitoring systems. CONCLUSION: Overall, the development of robust analysis methods in conjunction with modified MCLs can expand device testing applications to hemodynamic monitoring systems. Properly validated MCLs can create a stable and reproducible environment for testing patient monitoring systems over their entire operating ranges prior to clinical use.


Asunto(s)
Corazón Auxiliar , Monitorización Hemodinámica , Presión Sanguínea , Hemodinámica/fisiología , Humanos , Modelos Cardiovasculares , Monitoreo Fisiológico , Arteria Radial
9.
IEEE Access ; 10: 131932-131951, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36632174

RESUMEN

Respiratory motion (i.e., motion pattern and rate) can provide valuable information for many medical situations. This information may help in the diagnosis of different health disorders and diseases. Wi-Fi-based respiratory monitoring schemes utilizing commercial off-the-shelf (COTS) devices can provide contactless, low-cost, simple, and scalable respiratory monitoring without requiring specialized hardware. Despite intense research efforts, an in-depth investigation on how to evaluate this type of technology is missing. We demonstrated and assessed the feasibility of monitoring and extracting human respiratory motion from Wi-Fi channel state information (CSI) data. This demonstration involves implementing an end-to-end system for a COTS-based hardware platform, control software, data acquisition, and a proposed processing algorithm. The processing algorithm is a novel deep-learning-based approach that exploits small changes in both CSI amplitude and phase information to learn high-level abstractions of breathing-induced chest movements and to reveal the unique characteristics of their difference. We also conducted extensive laboratory experiments demonstrating an assessment technique that can be replicated when quantifying the performance of similar systems. The results indicate that the proposed scheme can classify respiratory patterns and rates with an accuracy of 99.54% and 98.69%, respectively, in moderately degraded RF channels. Comprehensive data acquisition revealed the capability of the proposed system in detecting and classifying respiratory motions. Understanding the feasible limits and potential failure factors of Wi-Fi CSI-based respiratory monitoring scheme - and how to evaluate them - is an essential step toward the practical deployment of this technology. This study discusses ideas for further expansion of this technology.

10.
Physiol Meas ; 42(11)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34763325

RESUMEN

Objective.Advanced hemodynamic monitoring systems have provided less invasive methods for estimating pressure-derived measurements such as pressure-derived cardiac output (CO) measurements. These devices apply algorithms to arterial pressure waveforms recorded via pressure recording components that transmit the pressure signal to a pressure monitor. While standards have been developed for pressure monitoring equipment, it is unclear how the equipment-induced error can affect secondary measurements from pressure waveforms. We propose an approach for modelling different components of a pressure monitoring system and use this model-based approach to investigate the effect of different pressure recording configurations on pressure-derived hemodynamic measurements.Approach.The proposed model-based approach is a three step process. (1) Modelling the response of pressure recording components using bench tests; (2) verifying the identified models through nonparametric equivalence tests; and (3) assessing the effects of pressure recording components on pressure-derived measurements. To delineate the application of this approach, we performed a series of model-based analyses to quantify the combined effect of a wide range of tubing configurations with various damping ratios and natural frequencies and monitors with different bandwidths on pressure waveforms and CO measurements by six pulse contour algorithms.Results.Model-based results show the error in pressure-derived CO measurements because of tubing configurations with different natural frequencies and damping ratios. Tubing configurations with low natural frequencies (<23 Hz) altered characteristics of pressure waveforms in a way that affected the CO measurement, some by as much as 20%.Significance.Our method can serve as a tool to quantify the performance of pressure recording systems with different dynamic properties. This approach can be applied to investigate the effects of physiologic signal recording configurations on various pressure-derived hemodynamic measurements.


Asunto(s)
Presión Arterial , Hemodinámica , Presión Sanguínea , Gasto Cardíaco , Frecuencia Cardíaca , Monitoreo Fisiológico
11.
Artículo en Inglés | MEDLINE | ID: mdl-34458854

RESUMEN

There are multiple study design choices to be selected in order to perform evaluations of predictive patient monitoring algorithms related to the event and true positive alarm definitions (e.g., how far ahead of the event is a true positive alarm). Often, passively collected patient monitoring datasets from clinical environments are available to perform these types of studies, so that the effects of different study design choices can be simulated to evaluate the robustness of an algorithm to those choices. Here, we simulate the effects of varying alarm and event definition criteria on the reported performance of the early warning score to predict hypotensive events. A total of 432 combinations of study design choices were simulated. Area under the receiver-operating characteristic curve varied from greater than 0.8 to less than 0.5 by adjusting alarm and event definition criteria. Traditional metrics for evaluating diagnostic systems were modulated across a wide range by adjusting study design choices for a predictive algorithm using a patient monitoring dataset. This highlights the importance of examining study design choices for new predictive patient monitoring algorithms and presents an approach to simulate different study designs with retrospective patient monitoring data as part of a robustness evaluation.

12.
Physiol Meas ; 42(5)2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33902012

RESUMEN

Objective.There have been many efforts to develop tools predictive of health deterioration in hospitalized patients, but comprehensive evaluation of their predictive ability is often lacking to guide implementation in clinical practice. In this work, we propose new techniques and metrics for evaluating the performance of predictive alert algorithms and illustrate the advantage of capturing the timeliness and the clinical burden of alerts through the example of the modified early warning score (MEWS) applied to the prediction of in-hospital code blue events.Approach. Different implementations of MEWS were calculated from available physiological parameter measurements collected from the electronic health records of ICU adult patients. The performance of MEWS was evaluated using conventional and a set of non-conventional metrics and approaches that take into account the timeliness and practicality of alarms as well as the false alarm burden.Main results. MEWS calculated using the worst-case measurement (i.e. values scoring 3 points in the MEWS definition) over 2 h intervals significantly reduced the false alarm rate by over 50% (from 0.19/h to 0.08/h) while maintaining similar sensitivity levels as MEWS calculated from raw measurements (∼80%). By considering a prediction horizon of 12 h preceding a code blue event, a significant improvement in the specificity (∼60%), the precision (∼155%), and the work-up to detection ratio (∼50%) could be achieved, at the cost of a relatively marginal decrease in sensitivity (∼10%).Significance. Performance aspects pertaining to the timeliness and burden of alarms can aid in understanding the potential utility of a predictive alarm algorithm in clinical settings.


Asunto(s)
Reanimación Cardiopulmonar , Hospitales , Adulto , Algoritmos , Humanos
13.
Front Physiol ; 11: 452, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528303

RESUMEN

Individualizing physiological models to a patient can enable patient-specific monitoring and treatment in critical care environments. However, this task often presents a unique "practical identifiability" challenge due to the conflict between model complexity and data scarcity. Regularization provides an established framework to cope with this conflict by compensating for data scarcity with prior knowledge. However, regularization has not been widely pursued in individualizing physiological models to facilitate patient-specific critical care. Thus, the goal of this work is to garner potentially generalizable insight into the practical use of regularization in individualizing a complex physiological model using scarce data by investigating its effect in a clinically significant critical care case study of blood volume kinetics and cardiovascular hemodynamics in hemorrhage and circulatory resuscitation. We construct a population-average model as prior knowledge and individualize the physiological model via regularization to illustrate that regularization can be effective in individualizing a physiological model to learn salient individual-specific characteristics (resulting in the goodness of fit to individual-specific data) while restricting unnecessary deviations from the population-average model (achieving practical identifiability). We also illustrate that regularization yields parsimonious individualization of only sensitive parameters as well as adequate physiological plausibility and relevance in predicting internal physiological states.

14.
IEEE Trans Biomed Eng ; 67(2): 471-481, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31071014

RESUMEN

OBJECTIVE: This paper presents a hardware-in-the-loop (HIL) testing platform for evaluating the performance of fluid resuscitation control algorithms. The proposed platform is a cyber-physical system that integrates physical devices with computational models and computer-based algorithms. METHODS: The HIL test bed is evaluated against in silico and in vivo data to ensure the hemodynamic variables are appropriately predicted in the proposed platform. The test bed is then used to investigate the performance of two fluid resuscitation control algorithms: a decision table (rule-based) and a proportional-integral-derivative (PID) controller. RESULTS: The statistical evaluation of test bed indicates that similar results are observed in the HIL test bed, in silico implementation, and the in vivo data, verifying that the HIL test bed can adequately predict the hemodynamic responses. Comparison of the two fluid resuscitation controllers reveals that both controllers stabilized hemodynamic variables over time and had similar speed to efficiently achieve the target level of the hemodynamic endpoint. However, the accuracy of the PID controller was higher than the rule-based for the scenarios tested in the HIL platform. CONCLUSION: The results demonstrate the potential of the HIL test bed for realistic testing of physiologic controllers by incorporating physical devices with computational models of physiology and disturbances. SIGNIFICANCE: This type of testing enables relatively fast evaluation of physiologic closed-loop control systems to aid in iterative design processes and offers complementary means to existing techniques (e.g., in silico, in vivo, and clinical studies) for testing of such systems against a wide range of disturbances and scenarios.


Asunto(s)
Algoritmos , Fluidoterapia/métodos , Resucitación/métodos , Presión Sanguínea/fisiología , Determinación de la Presión Sanguínea , Simulación por Computador , Hemodinámica/fisiología , Humanos , Programas Informáticos
15.
Front Physiol ; 10: 220, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30971934

RESUMEN

Physiological closed-loop controlled medical devices automatically adjust therapy delivered to a patient to adjust a measured physiological variable. In critical care scenarios, these types of devices could automate, for example, fluid resuscitation, drug delivery, mechanical ventilation, and/or anesthesia and sedation. Evidence from simulations using computational models of physiological systems can play a crucial role in the development of physiological closed-loop controlled devices; but the utility of this evidence will depend on the credibility of the computational model used. Computational models of physiological systems can be complex with numerous non-linearities, time-varying properties, and unknown parameters, which leads to challenges in model assessment. Given the wide range of potential uses of computational patient models in the design and evaluation of physiological closed-loop controlled systems, and the varying risks associated with the diverse uses, the specific model as well as the necessary evidence to make a model credible for a use case may vary. In this review, we examine the various uses of computational patient models in the design and evaluation of critical care physiological closed-loop controlled systems (e.g., hemodynamic stability, mechanical ventilation, anesthetic delivery) as well as the types of evidence (e.g., verification, validation, and uncertainty quantification activities) presented to support the model for that use. We then examine and discuss how a credibility assessment framework (American Society of Mechanical Engineers Verification and Validation Subcommittee, V&V 40 Verification and Validation in Computational Modeling of Medical Devices) for medical devices can be applied to computational patient models used to test physiological closed-loop controlled systems.

16.
J Electrocardiol ; 51(6S): S56-S60, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30180996

RESUMEN

OBJECTIVE: Recordings of signal noise and artifacts can be added to clean electrocardiogram (ECG) records to assess the performance of ECG and arrhythmia analysis algorithms in the presence of noise. We present a method to estimate device-specific signal noise and artifacts from ECG records. This method can be applied to obtain noise estimates from healthy subjects on any ECG lead, allowing a simple device-specific recording. The proposed approach is assessed using the MIT-BIH Noise Stress Test Database recordings combined with simulated ECGs. METHODS: The proposed noise-estimation method is based on the subtraction of a time-aligned median beat from a noisy ECG recording. To test our method, electrode motion and muscle artifact noise from MIT-BIH Noise Stress Test database were added to simulated ECG signals at signal-noise ratios (SNR) from -6 to 20 dB. A comparison between noise and estimated noise signal statistical characteristics was made including root-mean squared error and assessment of the power content in three frequency bands (cardiac [0.5-5 Hz], mid [5-25 Hz], and high [25-40 Hz]). RESULTS: Visual assessment and frequency analysis demonstrate the good quality of noise estimation. Root-mean squared error between noise and estimated noise signals was <0.5 Normalized Units across all SNR levels. Band power error was stable across SNR levels with median percentage error between noise and estimate noise signals of <10% for cardiac and mid frequency bands. CONCLUSION: Estimating noise from ECG records is a viable approach to generate noise and artifacts-only signals. These signals are device-specific and easy to collect from healthy subjects without requiring special electrode set-ups. Therefore, they may be suitable for use with annotated ECG databases to assess the robustness of ECG analysis algorithms in the presence of noise.


Asunto(s)
Algoritmos , Artefactos , Electrocardiografía/métodos , Arritmias Cardíacas/diagnóstico , Humanos , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido
17.
Data Brief ; 17: 544-550, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29876427

RESUMEN

In this paper we describe a data set of multivariate physiological measurements recorded from conscious sheep (N = 8; 37.4 ± 1.1 kg) during hemorrhage. Hemorrhage was experimentally induced in each animal by withdrawing blood from a femoral artery at two different rates (fast: 1.25 mL/kg/min; and slow: 0.25 mL/kg/min). Data, including physiological waveforms and continuous/intermittent measurements, were transformed to digital file formats (European Data Format [EDF] for waveforms and Comma-Separated Values [CSV] for continuous and intermittent measurements) as a comprehensive data set and stored and publicly shared here (Appendix A). The data set comprises experimental information (e.g., hemorrhage rate, animal weight, event times), physiological waveforms (arterial and central venous blood pressure, electrocardiogram), time-series records of non-invasive physiological measurements (SpO2, tissue oximetry), intermittent arterial and venous blood gas analyses (e.g., hemoglobin, lactate, SaO2, SvO2) and intermittent thermodilution cardiac output measurements. A detailed explanation of the hemodynamic and pulmonary changes during hemorrhage is available in a previous publication (Scully et al., 2016) [1].

18.
Control Eng Pract ; 73(April 2018): 149-160, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29887676

RESUMEN

This paper presents a physiological model to reproduce hemodynamic responses to blood volume perturbation. The model consists of three sub-models: a control-theoretic model relating blood volume response to blood volume perturbation; a simple physics-based model relating blood volume to stroke volume and cardiac output; and a phenomenological model relating cardiac output to blood pressure. A unique characteristic of this model is its balance for simplicity and physiological transparency. Initial validity of the model was examined using experimental data collected from 11 animals. The model may serve as a viable basis for the design and evaluation of closed-loop fluid resuscitation controllers.

19.
J Electrocardiol ; 51(1): 68-73, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28964425

RESUMEN

PURPOSE: Performance of ECG beat detectors is traditionally assessed on long intervals (e.g.: 30min), but only incorrect detections within a short interval (e.g.: 10s) may cause incorrect (i.e., missed+false) heart rate limit alarms (tachycardia and bradycardia). We propose a novel performance metric based on distribution of incorrect beat detection over a short interval and assess its relationship with incorrect heart rate limit alarm rates. BASIC PROCEDURES: Six ECG beat detectors were assessed using performance metrics over long interval (sensitivity and positive predictive value over 30min) and short interval (Area Under empirical cumulative distribution function (AUecdf) for short interval (i.e., 10s) sensitivity and positive predictive value) on two ECG databases. False heart rate limit and asystole alarm rates calculated using a third ECG database were then correlated (Spearman's rank correlation) with each calculated performance metric. MAIN FINDINGS: False alarm rates correlated with sensitivity calculated on long interval (i.e., 30min) (ρ=-0.8 and p<0.05) and AUecdf for sensitivity (ρ=0.9 and p<0.05) in all assessed ECG databases. Sensitivity over 30min grouped the two detectors with lowest false alarm rates while AUecdf for sensitivity provided further information to identify the two beat detectors with highest false alarm rates as well, which was inseparable with sensitivity over 30min. PRINCIPAL CONCLUSIONS: Short interval performance metrics can provide insights on the potential of a beat detector to generate incorrect heart rate limit alarms.


Asunto(s)
Alarmas Clínicas , Electrocardiografía/instrumentación , Frecuencia Cardíaca , Bases de Datos Factuales , Electrocardiografía/normas , Falla de Equipo , Análisis de Falla de Equipo , Humanos , Ensayo de Materiales , Monitoreo Fisiológico/instrumentación , Estándares de Referencia , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador , Estadísticas no Paramétricas
20.
IEEE Life Sci Conf ; 2018: 130-133, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34514471

RESUMEN

Physiological closed-loop controlled medical devices are safety-critical systems that combine patient monitors with therapy delivery devices to automatically titrate therapy to meet a patient's current need. Computational models of physiological systems can be used to test these devices and generate pre-clinical evidence of safety and performance before using the devices on patients. The credibility, utility, and acceptability of such model-based test results will depend on, among other factors, the computational model used. We examine how a recently developed risk-informed framework for establishing the credibility of computational models in medical device applications can be applied in the evaluation of physiological closed-loop controlled devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...