Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Entomol ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704359

RESUMEN

Flight behavior is an important component to understand in the context of pest management. However, because of their small size, little is known about the flight capacity of most stored-product insects, and when a flight has been assessed, it usually consists of a propensity for initiating flight. Despite a priori expectations of the importance of flight for moths, there are no data about the flight capacity and little on the flight behavior of the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). As a result, the objective of the current study was to (i) characterize the baseline flight capacity of E. kuehniella and (ii) determine how flight capacity is affected by the presence of kairomonal, pheromonal, or no stimuli. We found adult E. kuehniella flew a mean of 24-34 km in a 24-h period, and the distance flown per bout increased from 91 to 207 m in the presence of pheromones but decreased to 41 m when food was nearby compared to a negative control. The total number of flight bouts was 1.6-fold higher in the presence of pheromone compared to the negative control, but E. kuehniella flew significantly slower with pheromone and food cues present, suggesting they may be exhibiting an optimal foraging strategy. Our data on flight capacity results in qualitatively and quantitatively different conclusions about flight than those conclusions formed if only flight initiation is considered. Overall, this novel information is useful for understanding the spread within facilities and in the landscape (between facilities), as well as parameterizing ecological modeling.

2.
Phytopathology ; 114(1): 177-192, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37486162

RESUMEN

Sweet sorghum (Sorghum bicolor) lines M81-E and Colman were previously shown to differ in responses to Fusarium thapsinum and Macrophomina phaseolina, stalk rot pathogens that can reduce the yields and quality of biomass and extracted sugars. Inoculated tissues were compared for transcriptomic, phenolic metabolite, and enzymatic activity during disease development 3 and 13 days after inoculation (DAI). At 13 DAI, M81-E had shorter mean lesion lengths than Colman when inoculated with either pathogen. Transcripts encoding monolignol biosynthetic and modification enzymes were associated with transcriptional wound (control) responses of both lines at 3 DAI. Monolignol biosynthetic genes were differentially coexpressed with transcriptional activator SbMyb76 in all Colman inoculations, but only following M. phaseolina inoculation in M81-E, suggesting that SbMyb76 is associated with lignin biosynthesis during pathogen responses. In control inoculations, defense-related genes were expressed at higher levels in M81-E than Colman. Line, treatment, and timepoint differences observed in phenolic metabolite and enzyme activities did not account for observed differences in lesions. However, generalized additive models were able to relate metabolites, but not enzyme activities, to lesion length for quantitatively modeling disease progression: in M81-E, but not Colman, sinapic acid levels positively predicted lesion length at 3 DAI when cell wall-bound syringic acid was low, soluble caffeic acid was high, and lactic acid was high, suggesting that sinapic acid may contribute to responses at 3 DAI. These results provide potential gene targets for development of sweet sorghum varieties with increased stalk rot resistance to ensure biomass and sugar quality.


Asunto(s)
Sorghum , Sorghum/genética , Enfermedades de las Plantas/genética , Ácidos Cumáricos/metabolismo , Metabolismo Secundario , Grano Comestible
3.
Sci Rep ; 13(1): 6176, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061590

RESUMEN

Insects and microbes are known to interact in a variety of ways at food facilities, compounding damage. However, little research has explicated how specific common fungal species affect the behavior of the cosmopolitan secondary stored product pest, Lasioderma serricorne. Enhanced knowledge about attraction to microbially-produced volatile organic compounds (MVOCs) may be used to manipulate insect behavior. Aspergillus flavus and Fusarium verticillioides are two common, widespread pre- and postharvest fungi on small cereals that produce aflatoxins and fumonisins, respectively, while directly competing with each other for nutrients. Our goals were to (1) characterize the volatile emissions from grain inoculated by A. flavus or F. verticillioides derived from the cuticle of L. serricorne compared to uninoculated and sanitized grain, and (2) understand how MVOCs from each fungal species affects mobility, attraction, and preference by L. serricorne. Headspace collection revealed that the F. verticillioides- and A. flavus-inoculated grain produced significantly different volatiles compared to sanitized grain or the positive control. Changes in MVOC emissions affected close-range foraging during an Ethovision movement assay, with a greater frequency of entering and spending time in a small zone with kernels inoculated with A. flavus compared to other treatments. In the release-recapture assay, MVOCs were found to be attractive to L. serricorne at longer distances in commercial pitfall traps. There was no preference shown among semiochemical stimuli in a still-air, four-way olfactometer. Overall, our study suggests that MVOCs are important for close- and long-range orientation of L. serricorne during foraging, and that MVOCs may have the potential for inclusion in behaviorally-based tactics for this species.


Asunto(s)
Escarabajos , Animales , Grano Comestible , Insectos , Feromonas , Hongos
4.
Plants (Basel) ; 12(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37111955

RESUMEN

High-biomass-yielding southerly adapted switchgrasses (Panicum virgatum L.) frequently suffer from unpredictable winter hardiness at more northerly sites arising from damage to rhizomes that prevent effective spring regrowth. Previously, changes occurring over the growing season in rhizomes sampled from a cold-adapted tetraploid upland cultivar, Summer, demonstrated a role for abscisic acid (ABA), starch accumulation, and transcriptional reprogramming as drivers of dormancy onset and potential keys to rhizome health during winter dormancy. Here, rhizome metabolism of a high-yielding southerly adapted tetraploid switchgrass cultivar, Kanlow-which is a significant source of genetics for yield improvement-was studied over a growing season at a northern site. Metabolite levels and transcript abundances were combined to develop physiological profiles accompanying greening through the onset of dormancy in Kanlow rhizomes. Next, comparisons of the data to rhizome metabolism occurring in the adapted upland cultivar Summer were performed. These data revealed both similarities as well as numerous differences in rhizome metabolism that were indicative of physiological adaptations unique to each cultivar. Similarities included elevated ABA levels and accumulation of starch in rhizomes during dormancy onset. Notable differences were observed in the accumulation of specific metabolites, the expression of genes encoding transcription factors, and several enzymes linked to primary metabolism.

5.
Insects ; 14(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36975905

RESUMEN

Iflavirus is a group of viruses distributed mainly in arthropod species. We surveyed Tribolium castaneum iflavirus (TcIV) in different laboratory strains and in Sequence Read Archives (SRA) in GenBank. TcIV is highly specific to only T. castaneum and is not found in seven other Tenebrionid species, including the closely related species T. freemani. The same strains from different laboratories and different strains displayed largely different degrees of infections in the examination of 50 different lines by using Taqman-based quantitative PCR. We found that ~63% (27 out of 43 strains) of T. castaneum strains in different laboratories are positive for TcIV PCR with large degrees of variation, in the range of seven orders of magnitude, indicating that the TcIV is highly fluctuating depending on the rearing conditions. The TcIV was prevalent in the nervous system with low levels found in the gonad and gut. The transovarial transmission was supported in the experiment with surface-sterilized eggs. Interestingly, TcIV infection did not show observable pathogenicity. TcIV offers an opportunity to study the interaction between the virus and the immune system of this model beetle species.

6.
J Econ Entomol ; 116(2): 615-620, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36861251

RESUMEN

Developmental ability of Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae) was examined on six different sorghum milling fractions: Bran, Shorts, Cgrits, Fgrits, Red dogs, Flour, and also on a standard diet of Oat Flakes. For this purpose, a 1-day-old egg was placed in a vial containing 1 g of one of the sorghum fractions and exposed to three temperatures: 25, 30, or 32°C. All vials were checked daily for pupal and adult emergence and mortality of immatures. The developmental time was significantly affected by the type of sorghum fraction. After two weeks, for most of the temperatures examined, the longest developmental times in most cases for both pupation and adult emergence were observed in Flour and Oat flakes. Increasing the temperature from 25 to 30 accelerated the development, while adult emergence time did not differ between 30 and 32°C for all fractions except Flour. Egg mortality ranged from 11 to 78%, while larval and pupal mortality ranged from 0 to 22 and 0 to 45%, respectively for all sorghum fractions and different temperatures tested. Moreover, the mean overall immature mortality occurred at 30°C was 49.2, 39.7, and 65.1% at 25, 30, and 32°C for all the diets examined. The findings of the present work show that O. surinamensis can develop and survive in sorghum milling fractions and that the optimal temperatures for growth enhancement are 30 and 32°C. The temperatures within sorghum milling facilities could support O. surinamensis development on milling fractions if they are not addressed through phytosanitary measures.


Asunto(s)
Escarabajos , Sorghum , Perros , Animales , Temperatura , Larva , Grano Comestible
7.
Behav Processes ; 206: 104842, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36758732

RESUMEN

Though many forms of animal communication are not reliant on the order in which components of signals are combined to be effective, there is evidence that order does matter for some communication systems. In the light of differential responding to calls of varying note-order observed in black-capped chickadees in the field, we set out to determine whether chickadees recognize syntactically-ordered and incorrectly-ordered chick-a-dee calls as separate and distinct conceptual categories using both an auditory preference task and go/no-go operant conditioning paradigm. Results show that chickadees spent more time on the perch that did not produce sound (i.e., silent perch) than on either of the acoustic perches (i.e., natural and scrambled order chick-a-dee call playback) and visited the perch associated with naturally-ordered calls more often than the perch associated with scrambled-order calls. Birds in both the True natural- and scrambled-order call groups continued to respond according to the contingencies that they learned in Discrimination training, indicating that black-capped chickadees are capable of perceiving and acting upon the categories of natural- versus scrambled-ordered calls.


Asunto(s)
Pájaros Cantores , Vocalización Animal , Animales , Comunicación Animal , Pollos , Condicionamiento Operante
8.
J Insect Physiol ; 145: 104471, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36539178

RESUMEN

ATP binding cassette (ABC) proteins are involved in transport of substrates across membranes including eye pigments. Mutations of ABC transporter white, brown and scarlet genes of Drosophila and other insects result in visible eye color phenotypes. White locus was identified in a genome assembly of Plodia interpunctella and was found to extend for 16,670 bp comprising 13 exons. We report here recovery of heritable mutants in white in the Indian meal moth, P. interpunctella, using CRISPR/Cas9-mediated mutagenesis. A white eye strain of P. interpunctella c.737delC (Piw-/-) was previously isolated in 1986. Guide RNA (sgRNA) was designed for exon 1 (sgRNA242). Microinjection of Cas9/sgRNA242 complex into Plodia wild type eggs (≤20 min post oviposition) produced 156 viable larvae of which 81 eclosed as adults. Forty-five (56 %) adults displayed wild type phenotype, while 26 females (32 %) and 10 males (12 %) showed full or partial white eye phenotype. The 26 white eye females were mated with Piw-/- males and 21 matings resulted in F1 white eye progeny. Thirteen of the Piw-242 lines were established and sequencing showed indels at the CRISPR/Cas9 242AM site. Based on RT-PCR analysis, most white mutations resulted in suppressed levels of transcript. These results demonstrate the utility of CRISPR/Cas9 gene editing in Plodia which suggests this technology can be used to characterize the role of various genetic elements including those that encode novel targets or confer insecticide resistance mechanisms.


Asunto(s)
Edición Génica , Mariposas Nocturnas , Masculino , Femenino , Animales , Sistemas CRISPR-Cas , Transportadoras de Casetes de Unión a ATP/genética , Óvulo/metabolismo , Mutagénesis , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo
9.
Genes (Basel) ; 13(3)2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35328000

RESUMEN

The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), is a major global pest of cereal grains. Infestations are difficult to control as larvae feed inside grain kernels, and many populations are resistant to both contact insecticides and fumigants. We sequenced the genome of R. dominica to identify genes responsible for important biological functions and develop more targeted and efficacious management strategies. The genome was assembled from long read sequencing and long-range scaffolding technologies. The genome assembly is 479.1 Mb, close to the predicted genome size of 480.4 Mb by flow cytometry. This assembly is among the most contiguous beetle assemblies published to date, with 139 scaffolds, an N50 of 53.6 Mb, and L50 of 4, indicating chromosome-scale scaffolds. Predicted genes from biologically relevant groups were manually annotated using transcriptome data from adults and different larval tissues to guide annotation. The expansion of carbohydrase and serine peptidase genes suggest that they combine to enable efficient digestion of cereal proteins. A reduction in the copy number of several detoxification gene families relative to other coleopterans may reflect the low selective pressure on these genes in an insect that spends most of its life feeding internally. Chemoreceptor genes contain elevated numbers of pseudogenes for odorant receptors that also may be related to the recent ontogenetic shift of R. dominica to a diet consisting primarily of stored grains. Analysis of repetitive sequences will further define the evolution of bostrichid beetles compared to other species. The data overall contribute significantly to coleopteran genetic research.


Asunto(s)
Escarabajos , Insecticidas , Aclimatación , Animales , Escarabajos/genética , Dominica , Larva/genética
10.
mSystems ; 6(6): e0091621, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34726490

RESUMEN

Dermatophagoides farinae is inhabited by an intracellular bacterium, Cardinium. Using correlations between host and symbiont gene expression profiles, we identified several important molecular pathways that potentially regulate/facilitate their interactions. The expression of Cardinium genes collectively explained 95% of the variation in the expression of mite genes assigned to pathways for phagocytosis, apoptosis, the MAPK signaling cascade, endocytosis, the tumor necrosis factor (TNF) pathway, the transforming growth factor beta (TGF-ß) pathway, lysozyme, and the Toll/Imd pathway. In addition, expression of mite genes explained 76% of the variability in Cardinium gene expression. In particular, the expression of the Cardinium genes encoding the signaling molecules BamD, LepA, SymE, and VirD4 was either positively or negatively correlated with the expression levels of mite genes involved in endocytosis, phagocytosis, and apoptosis. We also found that Cardinium possesses a complete biosynthetic pathway for lipoic acid and may provide lipoate, but not biotin, to mites. Cardinium gene expression collectively explained 84% of the variation in expression related to several core mite metabolic pathways, and, most notably, a negative correlation was observed between bacterial gene expression and expression of mite genes assigned to the glycolysis and citric acid cycle pathways. Furthermore, we showed that Cardinium gene expression is correlated with expression levels of genes associated with terpenoid backbone biosynthesis. This pathway is important for the synthesis of pheromones, thus providing an opportunity for Cardinium to influence mite reproductive behavior to facilitate transmission of the bacterium. Overall, our study provided correlational gene expression data that can be useful for future research on mite-Cardinium interactions. IMPORTANCE The molecular mechanisms of mite-symbiont interactions and their impacts on human health are largely unknown. Astigmatid mites, such as house dust and stored-product mites, are among the most significant allergen sources worldwide. Although mites themselves are the main allergen sources, recent studies have indicated that mite-associated microbiomes may have implications for allergen production and human health. The major medically important house dust mite, D. farinae, is known to harbor a highly abundant intracellular bacterium belonging to the genus Cardinium. Expression analysis of the mite and symbiont genes can identify key mite molecular pathways that facilitate interactions with this endosymbiont and possibly shed light on how this bacterium affects mite allergen production and physiology in general.

11.
Sci Rep ; 11(1): 17530, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34475418

RESUMEN

When anthropogenic noise occurs simultaneously with an acoustic signal or cue, it can be difficult for an animal to interpret the information encoded within vocalizations. However, limited research has focused on how anthropogenic noise affects the identification of acoustic communication signals. In songbirds, research has also shown that black-capped chickadees (Poecile atricapillus) will shift the pitch and change the frequency at which they sing in the presence of anthropogenic, and experimental noise. Black-capped chickadees produce several vocalizations; their fee-bee song is used for mate attraction and territorial defence, and contains information about dominance hierarchy and native geographic location. Previously, we demonstrated that black-capped chickadees can discriminate between individual female chickadees via their fee-bee songs. Here we used an operant discrimination go/no-go paradigm to discern whether the ability to discriminate between individual female chickadees by their song would be impacted by differing levels of anthropogenic noise. Following discrimination training, two levels of anthropogenic noise (low: 40 dB SPL; high: 75 dB SPL) were played with stimuli to determine how anthropogenic noise would impact discrimination. Results showed that even with low-level noise (40 dB SPL) performance decreased and high-level (75 dB SPL) noise was increasingly detrimental to discrimination. We learned that perception of fee-bee songs does change in the presence of anthropogenic noise such that birds take significantly longer to learn to discriminate between females, but birds were able to generalize responding after learning the discrimination. These results add to the growing literature underscoring the impact of human-made noise on avian wildlife, specifically the impact on perception of auditory signals.


Asunto(s)
Acústica , Comunicación Animal , Contaminantes Ambientales/efectos adversos , Ruido/efectos adversos , Pájaros Cantores/fisiología , Vocalización Animal/fisiología , Animales , Femenino , Masculino , Factores Sexuales , Especificidad de la Especie
12.
BMC Plant Biol ; 21(1): 391, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34418969

RESUMEN

BACKGROUND: As effects of global climate change intensify, the interaction of biotic and abiotic stresses increasingly threatens current agricultural practices. The secondary cell wall is a vanguard of resistance to these stresses. Fusarium thapsinum (Fusarium stalk rot) and Macrophomina phaseolina (charcoal rot) cause internal damage to the stalks of the drought tolerant C4 grass, sorghum (Sorghum bicolor (L.) Moench), resulting in reduced transpiration, reduced photosynthesis, and increased lodging, severely reducing yields. Drought can magnify these losses. Two null alleles in monolignol biosynthesis of sorghum (brown midrib 6-ref, bmr6-ref; cinnamyl alcohol dehydrogenase, CAD; and bmr12-ref; caffeic acid O-methyltransferase, COMT) were used to investigate the interaction of water limitation with F. thapsinum or M. phaseolina infection. RESULTS: The bmr12 plants inoculated with either of these pathogens had increased levels of salicylic acid (SA) and jasmonic acid (JA) across both watering conditions and significantly reduced lesion sizes under water limitation compared to adequate watering, which suggested that drought may prime induction of pathogen resistance. RNA-Seq analysis revealed coexpressed genes associated with pathogen infection. The defense response included phytohormone signal transduction pathways, primary and secondary cell wall biosynthetic genes, and genes encoding components of the spliceosome and proteasome. CONCLUSION: Alterations in the composition of the secondary cell wall affect immunity by influencing phenolic composition and phytohormone signaling, leading to the action of defense pathways. Some of these pathways appear to be activated or enhanced by drought. Secondary metabolite biosynthesis and modification in SA and JA signal transduction may be involved in priming a stronger defense response in water-limited bmr12 plants.


Asunto(s)
Adaptación Fisiológica/genética , Sequías , Lignina/biosíntesis , Lignina/genética , Sorghum/química , Sorghum/genética , Sorghum/microbiología , Ascomicetos/patogenicidad , Pared Celular/química , Pared Celular/genética , Grano Comestible/química , Grano Comestible/genética , Grano Comestible/microbiología , Fusarium/patogenicidad , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Interacciones Huésped-Patógeno/genética , Mutación , Transducción de Señal , Estados Unidos , Agua/metabolismo
13.
Insects ; 12(7)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34357286

RESUMEN

The phylum Arthropoda includes species crucial for ecosystem stability, soil health, crop production, and others that present obstacles to crop and animal agriculture. The United States Department of Agriculture's Agricultural Research Service initiated the Ag100Pest Initiative to generate reference genome assemblies of arthropods that are (or may become) pests to agricultural production and global food security. We describe the project goals, process, status, and future. The first three years of the project were focused on species selection, specimen collection, and the construction of lab and bioinformatics pipelines for the efficient production of assemblies at scale. Contig-level assemblies of 47 species are presented, all of which were generated from single specimens. Lessons learned and optimizations leading to the current pipeline are discussed. The project name implies a target of 100 species, but the efficiencies gained during the project have supported an expansion of the original goal and a total of 158 species are currently in the pipeline. We anticipate that the processes described in the paper will help other arthropod research groups or other consortia considering genome assembly at scale.

14.
Sci Rep ; 11(1): 11448, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075134

RESUMEN

Dectes texanus is an important coleopteran pest of soybeans and cultivated sunflowers in the Midwestern United States that causes yield losses by girdling stems of their host plants. Although sunflower and giant ragweed are primary hosts of D. texanus, they began colonizing soybeans approximately 50 years ago and no reliable management method has been established to prevent or reduce losses by this pest. To identify genes putatively involved when feeding soybean, we compared gene expression of D. texanus third-instar larvae fed soybean to those fed sunflower, giant ragweed, or artificial diet. Dectes texanus larvae differentially expressed 514 unigenes when fed on soybean compared to those fed the other diet treatments. Enrichment analyses of gene ontology terms from up-regulated unigenes in soybean-fed larvae compared to those fed both primary hosts highlighted unigenes involved in oxidoreductase and polygalacturonase activities. Cytochrome P450s, carboxylesterases, major facilitator superfamily transporters, lipocalins, apolipoproteins, glycoside hydrolases 1 and 28, and lytic monooxygenases were among the most commonly up-regulated unigenes in soybean-fed larvae compared to those fed their primary hosts. These results suggest that D. texanus larvae differentially expressed unigenes involved in biotransformation of allelochemicals, digestion of plant cell walls and transport of small solutes and lipids when feeding in soybean.


Asunto(s)
Ambrosia , Alimentación Animal , Escarabajos/metabolismo , Regulación de la Expresión Génica , Glycine max , Helianthus , Proteínas de Insectos/biosíntesis , Transcripción Genética , Animales , Escarabajos/genética , Proteínas de Insectos/genética , Larva/genética , Larva/metabolismo
15.
Pest Manag Sci ; 77(6): 2667-2682, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33481331

RESUMEN

With less emphasis on fumigation after harvest, due to the phase-out of methyl bromide and increasing phosphine resistance, diversified postharvest integrated pest management (IPM) programs are needed. Here, we synthesize knowledge on semiochemical-mediated, behaviorally-based tactics, wherein semiochemicals are deployed to manipulate pest behavior to protect commodities. We note that beyond monitoring, commercial use is limited to mating disruption targeting mostly moths. In total, behaviorally-based tactics have been attempted for eight species of stored product insects from two orders and six families. Eighteen challenges were identified that may have prevented robust implementation of semiochemicals for behaviorally-based management in stored products, including direct competition with ubiquitous food cues, and the diverse insect assemblages that colonize food facilities. Further, we discuss the scientific data and methods required to support stakeholder acceptance of semiochemicals at food facilities, including demonstrating that pests are not attracted from the landscape and minimal spillover around pheromones. We sketch a robust areawide behaviorally-based IPM program after harvest, and clarify properties for improving semiochemicals, including incorporating those that are broad spectrum, competitive with food cues, potent at low concentration, and exhibit dose-dependent attraction. The research gaps and testable hypotheses described here will speed developing behaviorally-based tactics at food facilities. © 2021 Society of Chemical Industry.


Asunto(s)
Mariposas Nocturnas , Feromonas , Animales , Fumigación , Control de Insectos , Insectos , Control de Plagas , Feromonas/farmacología
16.
Pest Manag Sci ; 77(3): 1235-1244, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33051967

RESUMEN

BACKGROUND: Prevention is the first line of defense in mitigating losses of post-harvest crops. Long-lasting insecticide treated (LLIN) could be used in food facilities to expose insects to insecticide at different areas within a facility. Prior research has shown that single short exposures reduce movement and longer exposures increase mortality for stored-product insect pests, but we do not know how multiple short duration exposures and biotic and abiotic conditions affect insects exposed to LLIN. Here, we repeatedly exposed red flour beetles, Tribolium castaneum, to LLIN to assess the cumulative effects. We also examined the effects of beetle age and time of day during exposure, and temperature, humidity and food availability during recovery after a single exposure to LLIN. RESULTS: We found that four repeated 10-min exposures had similar knockdown effects as a single 30-min exposure. We also found that beetles were more affected when aged 1-6 days versus 14-20 days or were exposed at mid- or late in the day versus earlier in the day. Higher recovery levels were observed with food and at higher relative humidity. In addition, older beetles were more active than younger beetles during exposure, which could reduce time in contact with netting and partially explain why older beetles tended to be less affected. CONCLUSION: Some individuals can recover after exposure to LLIN, dependent on exposure duration and environmental factors, but our study shows that sublethal effects likely persist and future work should consider the physiology of T. castaneum before, during, and after exposure to LLIN. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.


Asunto(s)
Escarabajos , Insecticidas , Tribolium , Animales , Humedad , Insectos
17.
Anim Cogn ; 24(1): 193-204, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32980944

RESUMEN

Avian predators vary in their degree-of-threat to chickadees; for example, smaller owls and hawks are of higher threat to chickadees as they can easily maneuver through the trees, while larger predators cannot. We conducted an operant go/no-go discrimination task to investigate the effect of signal degradation on perceived threat. Chickadees were trained to respond to high-threat northern saw-whet owl (NSWO) or low-threat great horned owl (GHOW) calls that were recorded at short distances, and then tested with high- and low-threat owl calls that were rebroadcast and re-recorded across six distances (25 m, 50 m, 75 m, 100 m, 150 m, and 200 m). Subjects were further tested with high-threat and low-threat synthetic tones produced to mimic the natural calls across the six distances. We predicted that birds would perceive and respond to: (1) high-threat predator calls at longer distances compared to low-threat predator calls, and (2) synthetic tones similarly compared to the stimuli that they were designed to mimic. We believed chickadees would continue to perceive and respond to predators that pose a high threat at further distances; however, only responding to low-threat stimuli was consistent across distance recordings. Synthetic tones were treated similarly to natural stimuli but at lower response levels. Thus, the results of this study provide insights into how chickadees perceive threat.


Asunto(s)
Pájaros Cantores , Estrigiformes , Animales , Percepción Auditiva , Vocalización Animal
18.
Front Plant Sci ; 11: 1145, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849703

RESUMEN

Aphid herbivory elicits plant defense-related networks that are influenced by host genetics. Plants of the upland switchgrass (Panicum virgatum) cultivar Summer can be a suitable host for greenbug aphids (Schizaphis graminum; GB), and yellow sugarcane aphids (Sipha flava, YSA), whereas the lowland cultivar Kanlow exhibited multi-species resistance that curtails aphid reproduction. However, stabilized hybrids of Summer (♀) x Kanlow (♂) (SxK) with improved agronomics can be damaged by both aphids. Here, hormone and metabolite analyses, coupled with RNA-Seq analysis of plant transcriptomes, were utilized to delineate defense networks induced by aphid feeding in SxK switchgrass and pinpoint plant transcription factors (TFs), such as WRKYs that potentially regulate these responses. Abscisic acid (ABA) levels were significantly higher in GB infested plants at 5 and 10 days after infestation (DAI). ABA levels were highest at 15DAI in YSA infested plants. Jasmonic acid levels were significantly elevated under GB infestation, while salicylic acid levels were signifi40cantly elevated only at 15 DAI in YSA infested plants. Similarly, levels of several metabolites were altered in common or specifically to each aphid. YSA infestation induced a significant enrichment of flavonoids consistent with an upregulation of many genes associated with flavonoid biosynthesis at 15DAI. Gene co-expression modules that responded singly to either aphid or in common to both aphids were differentiated and linked to specific TFs. Together, these data provide important clues into the interplay of metabolism and transcriptional remodeling accompanying defense responses to aphid herbivory in hybrid switchgrass.

19.
PLoS One ; 15(5): e0233077, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32442185

RESUMEN

The molecular bases of aphid virulence to aphid crop plant resistance genes are poorly understood. The Russian wheat aphid, Diuraphis noxia, (Kurdjumov), and the greenbug, Schizaphis graminum (Rondani), are global pest of cereal crops. Each species damages barley, oat, rye and wheat, but S. graminum includes fescue, maize, rice and sorghum in its host range. This study was conducted to compare and contrast the transcriptomes of S. graminum biotype I and D. noxia biotype 1 when each ingested phloem from leaves of varieties of bread wheat, Triticum aestivum L., containing no aphid resistance (Dn0), resistance to D. noxia biotype 1 (Dn4), or resistance to both D. noxia biotype 1 and S. graminum biotype I (Dn7, wheat genotype 94M370). Gene ontology enrichments, k-means analysis and KEGG pathway analysis indicated that 94M370 plants containing the Dn7 D. noxia resistance gene from rye had stronger effects on the global transcriptional profiles of S. graminum and D. noxia relative to those fed Dn4 plants. S. graminum responds to ingestion of phloem sap from 94M370 plants by expression of unigenes coding for proteins involved in DNA and RNA repair, and delayed tissue and structural development. In contrast, D. noxia displays a completely different transcriptome after ingesting phloem sap from Dn4 or 94M370 plants, consisting of unigenes involved primarily in detoxification, nutrient acquisition and structural development. These variations in transcriptional responses of D. noxia and S. graminum suggest that the underlying evolutionary mechanism(s) of virulence in these aphids are likely species specific, even in cases of cross resistance.


Asunto(s)
Áfidos/fisiología , Resistencia a la Enfermedad , Perfilación de la Expresión Génica/métodos , Hordeum/genética , Proteínas de Insectos/genética , Alimentación Animal , Animales , Áfidos/clasificación , Áfidos/genética , Regulación de la Expresión Génica , Ontología de Genes , Herbivoria , Secuenciación de Nucleótidos de Alto Rendimiento , Hojas de la Planta/genética , Proteínas de Plantas/genética , Análisis de Secuencia de ARN , Especificidad de la Especie
20.
Anim Cogn ; 23(3): 595-611, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32107658

RESUMEN

Smaller owls and hawks are high-threat predators to small songbirds, like chickadees, in comparison to larger avian predators due to smaller raptors' agility (Templeton et al. in Proc Natl Acad Sci 104:5479-5482, 2005). The current literature focuses only on high- and low-threat predators. We propose that there may be a continuum in threat perception. In the current study, we conducted an operant go/no-go experiment investigating black-capped chickadees' acoustic discrimination of predator threat. After obtaining eight hawk and eight owl species' calls, we assigned each species as: (1) large, low-threat, (2) mid-sized, unknown-threat and (3) small-, high-threat predators, according to wingspan and body size. Black-capped chickadees were either trained to respond ('go') to high-threat predator calls or respond to low-threat predator calls. When either low-threat predator calls were not reinforced or high-threat predator calls were not reinforced the birds were to withhold responding ('no-go') to those stimuli. We then tested transfer of training with additional small and large predator calls, as well as with the calls of several mid-sized predators. We confirmed that chickadees can discriminate between high- and low-threat predator calls. We further investigated how chickadees categorize mid-sized species' calls by assessing transfer of training to previously non-differentially reinforced (i.e., pretraining) calls. Specifically, transfer test results suggest that mid-sized broad-winged hawks were perceived to be of high threat whereas mid-sized short-eared owls were perceived to be of low threat. However, mid-sized Cooper's hawks and northern hawk owls were not significantly differentially responded to, suggesting that they are of medium threat which supports the notion that perception of threat is along a continuum rather than distinct categories of high or low threat.


Asunto(s)
Pájaros Cantores , Vocalización Animal , Acústica , Animales , Percepción Auditiva , Discriminación en Psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...