Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 11(1): 6036, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247130

RESUMEN

Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs ('consumer-controlled'). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food ('resource-controlled'). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilization-induced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk.


Asunto(s)
Biomasa , Pradera , Herbivoria/fisiología , Nitrógeno/análisis , Fósforo/análisis , Intervalos de Confianza , Fertilizantes , Factores de Tiempo
3.
Nat Commun ; 10(1): 4981, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31672992

RESUMEN

Soil nitrogen mineralisation (Nmin), the conversion of organic into inorganic N, is important for productivity and nutrient cycling. The balance between mineralisation and immobilisation (net Nmin) varies with soil properties and climate. However, because most global-scale assessments of net Nmin are laboratory-based, its regulation under field-conditions and implications for real-world soil functioning remain uncertain. Here, we explore the drivers of realised (field) and potential (laboratory) soil net Nmin across 30 grasslands worldwide. We find that realised Nmin is largely explained by temperature of the wettest quarter, microbial biomass, clay content and bulk density. Potential Nmin only weakly correlates with realised Nmin, but contributes to explain realised net Nmin when combined with soil and climatic variables. We provide novel insights of global realised soil net Nmin and show that potential soil net Nmin data available in the literature could be parameterised with soil and climate data to better predict realised Nmin.

4.
Ecol Lett ; 22(7): 1136-1144, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31074933

RESUMEN

Sodium is unique among abundant elemental nutrients, because most plant species do not require it for growth or development, whereas animals physiologically require sodium. Foliar sodium influences consumption rates by animals and can structure herbivores across landscapes. We quantified foliar sodium in 201 locally abundant, herbaceous species representing 32 families and, at 26 sites on four continents, experimentally manipulated vertebrate herbivores and elemental nutrients to determine their effect on foliar sodium. Foliar sodium varied taxonomically and geographically, spanning five orders of magnitude. Site-level foliar sodium increased most strongly with site aridity and soil sodium; nutrient addition weakened the relationship between aridity and mean foliar sodium. Within sites, high sodium plants declined in abundance with fertilisation, whereas low sodium plants increased. Herbivory provided an explanation: herbivores selectively reduced high nutrient, high sodium plants. Thus, interactions among climate, nutrients and the resulting nutritional value for herbivores determine foliar sodium biogeography in herbaceous-dominated systems.


Asunto(s)
Pradera , Herbivoria , Sodio , Adaptación Fisiológica , Animales , Nitrógeno , Plantas , Suelo
5.
Ecol Lett ; 22(6): 936-945, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30884085

RESUMEN

Soil stores approximately twice as much carbon as the atmosphere and fluctuations in the size of the soil carbon pool directly influence climate conditions. We used the Nutrient Network global change experiment to examine how anthropogenic nutrient enrichment might influence grassland soil carbon storage at a global scale. In isolation, enrichment of nitrogen and phosphorous had minimal impacts on soil carbon storage. However, when these nutrients were added in combination with potassium and micronutrients, soil carbon stocks changed considerably, with an average increase of 0.04 KgCm-2  year-1 (standard deviation 0.18 KgCm-2  year-1 ). These effects did not correlate with changes in primary productivity, suggesting that soil carbon decomposition may have been restricted. Although nutrient enrichment caused soil carbon gains most dry, sandy regions, considerable absolute losses of soil carbon may occur in high-latitude regions that store the majority of the world's soil carbon. These mechanistic insights into the sensitivity of grassland carbon stocks to nutrient enrichment can facilitate biochemical modelling efforts to project carbon cycling under future climate scenarios.


Asunto(s)
Carbono , Suelo , Ecosistema , Nitrógeno , Nutrientes , Suelo/química
6.
Ecology ; 88(1): 3-17, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17489447

RESUMEN

The invasion paradox describes the co-occurrence of independent lines of support for both a negative and a positive relationship between native biodiversity and the invasions of exotic species. The paradox leaves the implications of native-exotic species richness relationships open to debate: Are rich native communities more or less susceptible to invasion by exotic species? We reviewed the considerable observational, experimental, and theoretical evidence describing the paradox and sought generalizations concerning where and why the paradox occurs, its implications for community ecology and assembly processes, and its relevance for restoration, management, and policy associated with species invasions. The crux of the paradox concerns positive associations between native and exotic species richness at broad spatial scales, and negative associations at fine scales, especially in experiments in which diversity was directly manipulated. We identified eight processes that can generate either negative or positive native-exotic richness relationships, but none can generate both. As all eight processes have been shown to be important in some systems, a simple general theory of the paradox, and thus of the relationship between diversity and invasibility, is probably unrealistic. Nonetheless, we outline several key issues that help resolve the paradox, discuss the difficult juxtaposition of experimental and observational data (which often ask subtly different questions), and identify important themes for additional study. We conclude that natively rich ecosystems are likely to be hotspots for exotic species, but that reduction of local species richness can further accelerate the invasion of these and other vulnerable habitats.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Conducta Competitiva , Modelos Biológicos , Plantas , Dinámica Poblacional
7.
Am Nat ; 157(1): 76-96, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18707237

RESUMEN

Herbivory often operates through a feedback in which herbivores affect the success and location of plants, which in turn affects the foraging behavior of animals. Factors other than food, such as social behavior, may influence the interactions between herbivores and the plants they consume. We used a simulation model to compare the effects of foraging and social behavior on plant distribution and foraging efficiency by gophers (Thomomys bottae) in a system characteristic of California grasslands. In this system, annual forbs are the preferred food items, and their abundance increases in areas disturbed by gopher burrowing. In addition, gopher social interactions generate buffer zones between adjacent burrows. During the first year of the simulations, before gophers affected the plant community, feeding efficiency declined with increased gopher density. However, after 40 yr, annual plant abundance increased with increasing gopher density, yielding higher maximum gopher density and per capita foraging efficiency. Conversely, increased width of the buffer zones lowered maximum gopher density and annual plant abundance resulting in lower feeding efficiency. In addition, the compact burrow structure of gophers employing an area-restricted search strategy allowed a higher density of gophers to coexist, resulting in higher annual plant abundance and higher per capita food-capture rates.

8.
Oecologia ; 125(1): 26-34, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28308219

RESUMEN

One way for animals to decrease energy expenditures is to minimize the cost of movement. For animals dwelling on slopes, gravity can impart a large energetic cost to movement. For this reason, animals traveling aboveground alter their movement patterns in response to the steepness of terrain (specifically hillslope angle) so as to minimize their energetic costs. Subterranean animals should also benefit from choosing optimum movement paths in relation to hillslopes but concurrently must factor the cost of excavation into their movement decisions. In cases where the excavation costs are much higher than the costs of working against gravity, excavation costs may override the consideration of gravitational costs and movement of subterranean animals may be independent of hillslope angle. To determine the response of a subterranean animal to hillslope angle, we excavated tunnels in the burrow systems of 19 pocket gophers in southern California that occupied hillslopes ranging from 2 to 30°. At each excavation we measured several characteristics of burrow geometry and used these data in a model of pocket gopher energetics to calculate the cost of tunnel construction at the various hillslope angles. We found that the cost of tunnel construction was independent of hillslope angle, and that the costs of shearing soil and pushing soil horizontally through the tunnels were 3 orders of magnitude greater than the costs of lifting the soil against the force of gravity. Accordingly, pocket gopher foraging tunnels were oriented independently of the hillslope. The decoupling of the movement patterns of subterranean animals from the effects of gravity is a distinctive feature of the subterranean habit compared to the movement of aboveground animals. Because of the important effects of tunnel construction on soil processes, this unique biological feature of subterranean animals has implications for basic physical processes, such as soil erosion. We found that the rate of soil flux generated by pocket gopher activity was invariant to hillslope. This relationship is in contrast to the most common model of soil movement generated by purely physical processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...