Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Sci Food ; 8(1): 25, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702314

RESUMEN

Cultivated meat (CM) offers a sustainable and ethical alternative to conventional animal agriculture, involving cell maturation in a controlled environment. To emulate the structural complexity of traditional meat, the development of animal-free and edible scaffolds is crucial, providing vital physical and biological support during tissue development. The aligned vascular bundles of the decellularised asparagus scaffold were selected to facilitate the attachment and alignment of murine myoblasts (C2C12) and porcine adipose-derived mesenchymal stem cells (pADMSCs). Muscle differentiation was assessed through immunofluorescence staining with muscle markers, including Myosin heavy chain (MHC), Myogenin (MYOG), and Desmin. The metabolic activity of Creatine Kinase in C2C12 differentiated cells significantly increased compared to proliferated cells. Quantitative PCR analysis revealed a significant increase in Myosin Heavy Polypeptide 1 (MYH1) and MYOG expression compared to Day 0. These results highlight the application of decellularised plant scaffold (DPS) as a promising, edible material conducive to cell attachment, proliferation, and differentiation into muscle tissue. To create a CM prototype with biological mimicry, pADMSC-derived muscle and fat cells were also co-cultured on the same scaffold. The co-culture was confirmed through immunofluorescence staining of muscle markers and LipidTOX staining, revealing distinct muscle fibres and adipocytes containing lipid droplets respectively. Texture profile analysis conducted on uncooked CM prototypes and pork loin showed no significant differences in textural values. However, the pan-fried CM prototype differed significantly in hardness and chewiness compared to pork loin. Understanding the scaffolds' textural profile enhances our insight into the potential sensory attributes of CM products. DPS shows potential for advancing CM biomanufacturing.

2.
Crit Rev Biotechnol ; 42(2): 311-323, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34151657

RESUMEN

The cultured meat market has been growing at an accelerated space since the first creation of cultured meat burger back in 2013. Substantial efforts have been made to reduce costs by eliminating serum in growth media and improving process efficiency by employing bioreactors. In parallel, efforts are also being made on scaffolding innovations to offer better cells proliferation, differentiation and tissue development. So far, scaffolds used in cultured meat research are predominantly collagen and gelatin, which are animal-derived. To align with cell-based meat vision i.e. environment conservation and animal welfare, plant-derived biomaterials for scaffolding are being intensively explored. This paper reviews and discusses the advantages and disadvantages of scaffold materials and potential scaffolding related to scale-up solution for the production of cultured meat.


Asunto(s)
Materiales Biocompatibles , Carne , Animales , Reactores Biológicos , Proliferación Celular , Ingeniería de Tejidos , Andamios del Tejido
3.
Trends Plant Sci ; 25(11): 1055-1058, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32896491

RESUMEN

Plant-based meat alternatives are a sustainable source of proteins that can match the taste and texture, color, and nutritional profile of specific types of meat. Here we highlight the product focus, the geographical spread of companies, and the funding landscape along with the critical challenges facing plant-based meat alternatives.


Asunto(s)
Carne , Gusto , Color , Carne/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...