Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Sex Med ; 20(2): 139-151, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36763930

RESUMEN

INTRODUCTION: Patients with a prostatectomy are at high risk of developing erectile dysfunction (ED) that is refractory to phosphodiesterase type 5 inhibitors. The cavernous nerve (CN) is frequently damaged during prostatectomy, causing loss of innervation to the penis. This initiates corpora cavernosal remodeling (apoptosis and fibrosis) and results in ED. AIM: To aid in the development of novel ED therapies, the current aim was to obtain a global understanding of how signaling mechanisms alter in the corpora cavernosa with loss of CN innervation that results in ED. METHODS: Microarray and pathway analysis were performed on the corpora cavernosal tissue of patients with a prostatectomy (n = 3) or Peyronie disease (control, n = 3). Results were compared with an analysis of a Sprague-Dawley rat CN injury model (n = 10). RNA was extracted by TRIzol, DNase treated, and purified by a Qiagen Mini Kit. Microarray was performed with the Human Gene 2.0 ST Array and the RU34 rat array. Differentially expressed genes were identified through several analytic tools (ShinyGO, Ingenuity, WebGestalt) and databases (GO, Reactome). A 2-fold change was used as the threshold for differential expression. OUTCOMES: Pathways that were altered (up- or downregulated) in response to CN injury in the prostatectomy patients and a rat CN injury model were determined. RESULTS: Microarray identified 197 differentially expressed protein-coding genes in the corpora cavernosa from the prostatectomy cohort, with 100 genes upregulated and 97 genes downregulated. Altered signaling pathways that were identified that affect tissue morphology included the following: neurologic disease, cell death and survival, tissue and cellular development, skeletal and muscle development and disorders, connective tissue development and function, tissue morphology, embryonic development, growth and proliferation, cell-to-cell signaling, and cell function and maintenance. These human pathways have high similarity to those observed in the CN-injured rat ED model. CLINICAL IMPLICATIONS: Significant penile remodeling continues in patients long after the acute surgical injury to the CN takes place, offering the opportunity for clinical intervention to reverse penile remodeling and improve erectile function. STRENGTHS AND LIMITATIONS: Understanding how signaling pathways change in response to CN injury and how these changes translate to altered morphology of the corpora cavernosa and ensuing ED is critical to identify strategic targets for therapy development. CONCLUSION: Altered signaling in pathways that regulate tissue homeostasis, morphogenesis, and development was identified in penes of patients with a prostatectomy, and competitive forces of apoptosis and proliferation/regeneration were found to compete to establish dominance after CN injury. How these pathways interact to regulate penis tissue homeostasis is a complex process that requires further investigation.


Asunto(s)
Disfunción Eréctil , Induración Peniana , Traumatismos del Sistema Nervioso , Masculino , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Erección Peniana , Pene , Traumatismos del Sistema Nervioso/complicaciones , Prostatectomía/efectos adversos , Modelos Animales de Enfermedad
2.
J Sex Med ; 19(1): 37-53, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34838480

RESUMEN

BACKGROUND: Erectile dysfunction (ED) is a debilitating medical condition in which current treatments are minimally effective in diabetic patients due to neuropathy of the cavernous nerve, a peripheral nerve that innervates the penis. Loss of innervation causes apoptosis of penile smooth muscle, remodeling of corpora cavernosa (penile erectile tissue) morphology, and ED. AIM: In this study, microarray and pathway analysis were used to obtain a global understanding of how signaling mechanisms are altered in diabetic patients and animal models as ED develops, in order to identify novel targets for disease management, and points of intervention for clinical therapy development. METHODS AND OUTCOMES: Human corpora cavernosal tissue was obtained from diabetic (n = 4) and Peyronie's (control, n = 3) patients that were undergoing prosthesis implant to treat ED, and BB/WOR diabetic (n = 5) and resistant (n = 5) rats. RNA was extracted using TRIzol, DNase treated, and purified by Qiagen mini kit. Microarray was performed using the Human Gene 2.0 ST Array. (i) Alterations in patient and diabetic rat pathway signaling were examined using several analytical tools (ShinyGO, Metascape, WebGestalt, STRING) and databases, (ii) Strengths/weaknesses of the different pathway analysis tools were compared, and (iii) Comparison of human and rat (BB/WOR and Streptozotocin) pathway analysis was performed. Two technical replicates were performed. P value (FDR) < .15 was used as threshold for differential expression. FDR < 0.05 was considered significant. RESULTS: Microarray identified 182 differentially expressed protein-coding genes. Pathway analysis revealed similar enrichments with different analytical tools. Down regulated pathways include development, tubular structure, sprouting, cell death, ischemia, angiogenesis, transcription, second messengers, and stem cell differentiation. ED patients, who have diabetes, incur significant loss of normal regulatory processes required for repair and replacement of injured corpora cavernosal tissue. Combined with loss of apoptotic regulatory mechanisms, this results in significant architectural remodeling of the corpora cavernosa, and loss of regenerative capacity in the penis. CLINICAL TRANSLATION: This first report of microarray and pathway analysis in human corpora cavernosa, is critical for identification of novel pathways pertinent to ED and for validating animal models. STRENGTHS AND LIMITATIONS: The analysis of tissue specific gene expression profiles provides a means of understanding drivers of disease and identifying novel pathways for clinical intervention. CONCLUSION: Penis from diabetic ED patients lacks capacity for maintenance of corpora cavernosal architecture and regeneration, which are critical points for intervention for therapy development. Searl T, Ohlander S, McVary KT, et al., Pathway Enrichment Analysis of Microarray Data Fom Human Penis of Diabetic and Peyronie's Patients, in Comparison With Diabetic Rat Erectile Dysfunction Models. J Sex Med 2022;19:37-53.


Asunto(s)
Diabetes Mellitus , Disfunción Eréctil , Induración Peniana , Animales , Apoptosis , Disfunción Eréctil/etiología , Humanos , Masculino , Músculo Liso , Pene , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA