Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Emerg Med ; 29(1): 49-55, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34545027

RESUMEN

BACKGROUND: Triage and redirection of patients to alternative care providers is one tool used to overcome the growing issue of crowding in emergency departments (EDs). Electronic patient self-triage (eTriage) may reduce waiting times and required face-to-face contact. There are limited studies into its efficacy, accuracy and validity in an ED setting. OBJECTIVES: The aim of this study was to assess the agreement and validity of eTriage with a reference standard of nurse face-to-face triage. A secondary aim was to assess the ability of both systems to predict high and low acuity outcomes. DESIGN: This was a retrospective study conducted over 8 months in two UK hospitals. Inclusion criteria were all ambulatory patients aged ≥18. All patients completed an eTriage and nurse-led triage using the Manchester Triage System (MTS). MAIN RESULTS: During the study period, 43 788 adult patients attended one of the two ED sites and 26 757 used eTriage. A total of 1424 patient episodes had no recorded MTS and were excluded from the study leaving 25 333 paired triages for the final cohort. Agreement between eTriage and nurse triage was low with a weighted Kappa coefficient of 0.14 (95% CI, 0.14-0.15) with an associated weak positive correlation (rs 0.321). Level of undertriage by eTriage compared with nurse triage was 10.1%, and overtriage was 59.2%. The sensitivity for prediction of high acuity outcomes was 88.5% (95% CI, 77.9-95.3%) for eTriage and 53.8% (95% CI 41.1-66.0%) for nurse MTS. The specificity for predicting low risk patients was 88.5% (95% CI, 87.4-89.5%) for eTriage and 80.6% (95% CI, 79.3-81.8%) for nurse MTS. CONCLUSION: Agreement and correlation of eTriage with the reference standard of nurse MTS was low; patients using eTriage tended to over triage when compared to the triage nurse. eTriage had a higher sensitivity for high acuity presentations and demonstrated similar specificity for low acuity presentations when compared to triage nurse MTS. Further work is necessary to validate eTriage as a potential tool for safe redirection of ED attenders to alternative care providers.


Asunto(s)
Servicio de Urgencia en Hospital , Triaje , Adulto , Electrónica , Humanos , Estudios Retrospectivos , Reino Unido
2.
Database (Oxford) ; 2017(1)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28365736

RESUMEN

The Ensembl software resources are a stable infrastructure to store, access and manipulate genome assemblies and their functional annotations. The Ensembl 'Core' database and Application Programming Interface (API) was our first major piece of software infrastructure and remains at the centre of all of our genome resources. Since its initial design more than fifteen years ago, the number of publicly available genomic, transcriptomic and proteomic datasets has grown enormously, accelerated by continuous advances in DNA-sequencing technology. Initially intended to provide annotation for the reference human genome, we have extended our framework to support the genomes of all species as well as richer assembly models. Cross-referenced links to other informatics resources facilitate searching our database with a variety of popular identifiers such as UniProt and RefSeq. Our comprehensive and robust framework storing a large diversity of genome annotations in one location serves as a platform for other groups to generate and maintain their own tailored annotation. We welcome reuse and contributions: our databases and APIs are publicly available, all of our source code is released with a permissive Apache v2.0 licence at http://github.com/Ensembl and we have an active developer mailing list ( http://www.ensembl.org/info/about/contact/index.html ). Database URL: http://www.ensembl.org.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genoma Humano , Anotación de Secuencia Molecular/métodos , Análisis de Secuencia de ADN/métodos , Interfaz Usuario-Computador , Humanos
3.
Nat Biotechnol ; 32(12): 1250-5, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25402615

RESUMEN

The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.


Asunto(s)
Hurones/genética , Genoma , Gripe Humana/genética , Análisis de Secuencia de ADN , Animales , Secuencia de Bases , Mapeo Cromosómico , Modelos Animales de Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Gripe Humana/transmisión , Gripe Humana/virología , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidad
4.
Nat Commun ; 5: 5307, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25329095

RESUMEN

Natural populations subjected to strong environmental selection pressures offer a window into the genetic underpinnings of evolutionary change. Cavefish populations, Astyanax mexicanus (Teleostei: Characiphysi), exhibit repeated, independent evolution for a variety of traits including eye degeneration, pigment loss, increased size and number of taste buds and mechanosensory organs, and shifts in many behavioural traits. Surface and cave forms are interfertile making this system amenable to genetic interrogation; however, lack of a reference genome has hampered efforts to identify genes responsible for changes in cave forms of A. mexicanus. Here we present the first de novo genome assembly for Astyanax mexicanus cavefish, contrast repeat elements to other teleost genomes, identify candidate genes underlying quantitative trait loci (QTL), and assay these candidate genes for potential functional and expression differences. We expect the cavefish genome to advance understanding of the evolutionary process, as well as, analogous human disease including retinal dysfunction.


Asunto(s)
Characidae/genética , Evolución Molecular , Ojo/embriología , Regulación del Desarrollo de la Expresión Génica , Retina/embriología , Animales , Apoptosis , Characidae/embriología , Elementos Transponibles de ADN , Ambiente , Proteínas de Peces/genética , Perfilación de la Expresión Génica , Genoma , Hibridación in Situ , Datos de Secuencia Molecular , Fenotipo , Sitios de Carácter Cuantitativo , Retina/fisiología
5.
Science ; 345(6200): 1074-1079, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25170157

RESUMEN

The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for the rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified more than 100 selective sweeps specific to domestic rabbits but only a relatively small number of fixed (or nearly fixed) single-nucleotide polymorphisms (SNPs) for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved noncoding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that because of a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few domestication loci.


Asunto(s)
Animales Domésticos/genética , Animales Salvajes/genética , Conejos/genética , Animales , Animales Domésticos/anatomía & histología , Animales Domésticos/psicología , Animales Salvajes/anatomía & histología , Animales Salvajes/psicología , Secuencia de Bases , Conducta Animal , Cruzamiento , Evolución Molecular , Frecuencia de los Genes , Sitios Genéticos , Genoma/genética , Datos de Secuencia Molecular , Fenotipo , Polimorfismo de Nucleótido Simple , Conejos/anatomía & histología , Conejos/psicología , Selección Genética , Análisis de Secuencia de ADN
6.
Nat Genet ; 45(7): 776-783, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23749191

RESUMEN

The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken and zebra finch, and this repertoire has been shaped through lineage-specific duplications. We identify genes that are responsive to influenza A viruses using the lung transcriptomes of control ducks and ones that were infected with either a highly pathogenic (A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/Hubei/65/05) H5N1 virus. Further, we show how the duck's defense mechanisms against influenza infection have been optimized through the diversification of its ß-defensin and butyrophilin-like repertoires. These analyses, in combination with the genomic and transcriptomic data, provide a resource for characterizing the interaction between host and influenza viruses.


Asunto(s)
Reservorios de Enfermedades , Patos/genética , Patos/virología , Genoma , Gripe Aviar/genética , Transcriptoma/genética , Animales , Secuencia de Bases , Pollos/genética , Vectores de Enfermedades , Patos/inmunología , Femenino , Gansos/genética , Genoma/fisiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad/genética , Gripe Aviar/inmunología , Datos de Secuencia Molecular , Filogenia , Especificidad de la Especie
7.
Nat Genet ; 45(6): 701-706, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23624526

RESUMEN

The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ∼267.9-248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell.


Asunto(s)
Tortugas/genética , Exoesqueleto/metabolismo , Animales , Tipificación del Cuerpo/genética , Embrión de Pollo , Pollos/genética , Desarrollo Embrionario/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Genoma , MicroARNs/genética , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Receptores Odorantes/genética , Proteínas de Reptiles/genética , Proteínas de Reptiles/metabolismo , Análisis de Secuencia de ADN , Transcriptoma , Tortugas/embriología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
8.
Nat Genet ; 45(5): 567-72, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23542700

RESUMEN

Several attributes intuitively considered to be typical mammalian features, such as complex behavior, live birth and malignant disease such as cancer, also appeared several times independently in lower vertebrates. The genetic mechanisms underlying the evolution of these elaborate traits are poorly understood. The platyfish, X. maculatus, offers a unique model to better understand the molecular biology of such traits. We report here the sequencing of the platyfish genome. Integrating genome assembly with extensive genetic maps identified an unexpected evolutionary stability of chromosomes in fish, in contrast to in mammals. Genes associated with viviparity show signatures of positive selection, identifying new putative functional domains and rare cases of parallel evolution. We also find that genes implicated in cognition show an unexpectedly high rate of duplicate gene retention after the teleost genome duplication event, suggesting a hypothesis for the evolution of the behavioral complexity in fish, which exceeds that found in amphibians and reptiles.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Ciprinodontiformes/genética , Proteínas de Peces/genética , Genoma , Selección Genética , Cromosomas Sexuales/genética , Animales , Femenino , Duplicación de Gen , Meiosis/genética , Datos de Secuencia Molecular , Filogenia , Sintenía , Viviparidad de Animales no Mamíferos
9.
Database (Oxford) ; 2012: bas008, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22434842

RESUMEN

The Consensus Coding Sequence (CCDS) collaboration involves curators at multiple centers with a goal of producing a conservative set of high quality, protein-coding region annotations for the human and mouse reference genome assemblies. The CCDS data set reflects a 'gold standard' definition of best supported protein annotations, and corresponding genes, which pass a standard series of quality assurance checks and are supported by manual curation. This data set supports use of genome annotation information by human and mouse researchers for effective experimental design, analysis and interpretation. The CCDS project consists of analysis of automated whole-genome annotation builds to identify identical CDS annotations, quality assurance testing and manual curation support. Identical CDS annotations are tracked with a CCDS identifier (ID) and any future change to the annotated CDS structure must be agreed upon by the collaborating members. CCDS curation guidelines were developed to address some aspects of curation in order to improve initial annotation consistency and to reduce time spent in discussing proposed annotation updates. Here, we present the current status of the CCDS database and details on our procedures to track and coordinate our efforts. We also present the relevant background and reasoning behind the curation standards that we have developed for CCDS database treatment of transcripts that are nonsense-mediated decay (NMD) candidates, for transcripts containing upstream open reading frames, for identifying the most likely translation start codons and for the annotation of readthrough transcripts. Examples are provided to illustrate the application of these guidelines. DATABASE URL: http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi.


Asunto(s)
Secuencia de Consenso , Sistemas de Administración de Bases de Datos , Bases de Datos Genéticas , Genómica/métodos , Anotación de Secuencia Molecular/métodos , Animales , Humanos , Ratones
10.
Nature ; 477(7366): 587-91, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21881562

RESUMEN

The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments. Among amniotes, genome sequences are available for mammals and birds, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes. Also, A. carolinensis mobile elements are very young and diverse-more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.


Asunto(s)
Aves/genética , Evolución Molecular , Genoma/genética , Lagartos/genética , Mamíferos/genética , Animales , Pollos/genética , Secuencia Rica en GC/genética , Genómica , Humanos , Datos de Secuencia Molecular , Filogenia , Sintenía/genética , Cromosoma X/genética
11.
Nature ; 477(7363): 207-10, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21832995

RESUMEN

Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC) II is a conserved feature of the adaptive immune system of jawed vertebrates, but we show that Atlantic cod has lost the genes for MHC II, CD4 and invariant chain (Ii) that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions. We find a highly expanded number of MHC I genes and a unique composition of its Toll-like receptor (TLR) families. This indicates how the Atlantic cod immune system has evolved compensatory mechanisms in both adaptive and innate immunity in the absence of MHC II. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates.


Asunto(s)
Gadus morhua/genética , Gadus morhua/inmunología , Genoma/genética , Sistema Inmunológico/inmunología , Inmunidad/genética , Animales , Evolución Molecular , Genómica , Hemoglobinas/genética , Inmunidad/inmunología , Complejo Mayor de Histocompatibilidad/genética , Complejo Mayor de Histocompatibilidad/inmunología , Masculino , Polimorfismo Genético/genética , Sintenía/genética , Receptores Toll-Like/genética
12.
Nature ; 464(7289): 757-62, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20360741

RESUMEN

The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.


Asunto(s)
Pinzones/genética , Genoma/genética , Regiones no Traducidas 3'/genética , Animales , Percepción Auditiva/genética , Encéfalo/fisiología , Pollos/genética , Evolución Molecular , Femenino , Pinzones/fisiología , Duplicación de Gen , Redes Reguladoras de Genes/genética , Masculino , MicroARNs/genética , Modelos Animales , Familia de Multigenes/genética , Retroelementos/genética , Cromosomas Sexuales/genética , Secuencias Repetidas Terminales/genética , Transcripción Genética/genética , Vocalización Animal/fisiología
13.
Genome Res ; 19(7): 1316-23, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19498102

RESUMEN

Effective use of the human and mouse genomes requires reliable identification of genes and their products. Although multiple public resources provide annotation, different methods are used that can result in similar but not identical representation of genes, transcripts, and proteins. The collaborative consensus coding sequence (CCDS) project tracks identical protein annotations on the reference mouse and human genomes with a stable identifier (CCDS ID), and ensures that they are consistently represented on the NCBI, Ensembl, and UCSC Genome Browsers. Importantly, the project coordinates on manually reviewing inconsistent protein annotations between sites, as well as annotations for which new evidence suggests a revision is needed, to progressively converge on a complete protein-coding set for the human and mouse reference genomes, while maintaining a high standard of reliability and biological accuracy. To date, the project has identified 20,159 human and 17,707 mouse consensus coding regions from 17,052 human and 16,893 mouse genes. Three evaluation methods indicate that the entries in the CCDS set are highly likely to represent real proteins, more so than annotations from contributing groups not included in CCDS. The CCDS database thus centralizes the function of identifying well-supported, identically-annotated, protein-coding regions.


Asunto(s)
Secuencia de Consenso , Genoma , Sistemas de Lectura Abierta/genética , Animales , Humanos , Ratones , Alineación de Secuencia
14.
Am J Hum Genet ; 84(2): 224-34, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19200524

RESUMEN

Nonsense SNPs introduce premature termination codons into genes and can result in the absence of a gene product or in a truncated and potentially harmful protein, so they are often considered disadvantageous and are associated with disease susceptibility. As such, we might expect the disrupted allele to be rare and, in healthy people, observed only in a heterozygous state. However, some, like those in the CASP12 and ACTN3 genes, are known to be present at high frequencies and to occur often in a homozygous state and seem to have been advantageous in recent human evolution. To evaluate the selective forces acting on nonsense SNPs as a class, we have carried out a large-scale experimental survey of nonsense SNPs in the human genome by genotyping 805 of them (plus control synonymous SNPs) in 1,151 individuals from 56 worldwide populations. We identified 169 genes containing nonsense SNPs that were variable in our samples, of which 99 were found with both copies inactivated in at least one individual. We found that the sampled humans differ on average by 24 genes (out of about 20,000) because of these nonsense SNPs alone. As might be expected, nonsense SNPs as a class were found to be slightly disadvantageous over evolutionary timescales, but a few nevertheless showed signs of being possibly advantageous, as indicated by unusually high levels of population differentiation, long haplotypes, and/or high frequencies of derived alleles. This study underlines the extent of variation in gene content within humans and emphasizes the importance of understanding this type of variation.


Asunto(s)
Codón sin Sentido/genética , Evolución Molecular , Polimorfismo de Nucleótido Simple , Actinina/genética , Proteínas Portadoras/genética , Caspasa 12/genética , Mapeo Cromosómico , ADN/genética , Cartilla de ADN , Mutación del Sistema de Lectura , Genotipo , Heterocigoto , Homocigoto , Humanos , Proteínas del Tejido Nervioso/genética , Sistemas de Lectura Abierta/genética
15.
Genome Res ; 14(5): 925-8, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15078858

RESUMEN

Ensembl (http://www.ensembl.org/) is a bioinformatics project to organize biological information around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of individual genomes, and of the synteny and orthology relationships between them. It is also a framework for integration of any biological data that can be mapped onto features derived from the genomic sequence. Ensembl is available as an interactive Web site, a set of flat files, and as a complete, portable open source software system for handling genomes. All data are provided without restriction, and code is freely available. Ensembl's aims are to continue to "widen" this biological integration to include other model organisms relevant to understanding human biology as they become available; to "deepen" this integration to provide an ever more seamless linkage between equivalent components in different species; and to provide further classification of functional elements in the genome that have been previously elusive.


Asunto(s)
Biología Computacional/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...