Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 33(9): 3076-3103, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34244767

RESUMEN

Cytoplasmic lipid droplets (LDs) are evolutionarily conserved organelles that store neutral lipids and play critical roles in plant growth, development, and stress responses. However, the molecular mechanisms underlying their biogenesis at the endoplasmic reticulum (ER) remain obscure. Here we show that a recently identified protein termed LD-associated protein [LDAP]-interacting protein (LDIP) works together with both endoplasmic reticulum-localized SEIPIN and the LD-coat protein LDAP to facilitate LD formation in Arabidopsis thaliana. Heterologous expression in insect cells demonstrated that LDAP is required for the targeting of LDIP to the LD surface, and both proteins are required for the production of normal numbers and sizes of LDs in plant cells. LDIP also interacts with SEIPIN via a conserved hydrophobic helix in SEIPIN and LDIP functions together with SEIPIN to modulate LD numbers and sizes in plants. Further, the co-expression of both proteins is required to restore normal LD production in SEIPIN-deficient yeast cells. These data, combined with the analogous function of LDIP to a mammalian protein called LD Assembly Factor 1, are discussed in the context of a new model for LD biogenesis in plant cells with evolutionary connections to LD biogenesis in other eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Gotas Lipídicas/fisiología , Biogénesis de Organelos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
2.
Front Plant Sci ; 12: 658961, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936146

RESUMEN

Lipid droplets (LDs) are neutral-lipid-containing organelles found in all kingdoms of life and are coated with proteins that carry out a vast array of functions. Compared to mammals and yeast, relatively few LD proteins have been identified in plants, particularly those associated with LDs in vegetative (non-seed) cell types. Thus, to better understand the cellular roles of LDs in plants, a more comprehensive inventory and characterization of LD proteins is required. Here, we performed a proteomics analysis of LDs isolated from drought-stressed Arabidopsis leaves and identified EARLY RESPONSIVE TO DEHYDRATION 7 (ERD7) as a putative LD protein. mCherry-tagged ERD7 localized to both LDs and the cytosol when ectopically expressed in plant cells, and the protein's C-terminal senescence domain (SD) was both necessary and sufficient for LD targeting. Phylogenetic analysis revealed that ERD7 belongs to a six-member family in Arabidopsis that, along with homologs in other plant species, is separated into two distinct subfamilies. Notably, the SDs of proteins from each subfamily conferred targeting to either LDs or mitochondria. Further, the SD from the ERD7 homolog in humans, spartin, localized to LDs in plant cells, similar to its localization in mammals; although, in mammalian cells, spartin also conditionally localizes to other subcellular compartments, including mitochondria. Disruption of ERD7 gene expression in Arabidopsis revealed no obvious changes in LD numbers or morphology under normal growth conditions, although this does not preclude a role for ERD7 in stress-induced LD dynamics. Consistent with this possibility, a yeast two-hybrid screen using ERD7 as bait identified numerous proteins involved in stress responses, including some that have been identified in other LD proteomes. Collectively, these observations provide new insight to ERD7 and the SD-containing family of proteins in plants and suggest that ERD7 may be involved in functional aspects of plant stress response that also include localization to the LD surface.

3.
Plant Cell ; 32(9): 2932-2950, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32690719

RESUMEN

SEIPIN proteins are localized to endoplasmic reticulum (ER)-lipid droplet (LD) junctions where they mediate the directional formation of LDs into the cytoplasm in eukaryotic cells. Unlike in animal and yeast cells, which have single SEIPIN genes, plants have three distinct SEIPIN isoforms encoded by separate genes. The mechanism of SEIPIN action remains poorly understood, and here we demonstrate that part of the function of two SEIPIN isoforms in Arabidopsis (Arabidopsis thaliana), AtSEIPIN2 and AtSEIPIN3, may depend on their interaction with the vesicle-associated membrane protein (VAMP)-associated protein (VAP) family member AtVAP27-1. VAPs have well-established roles in the formation of membrane contact sites and lipid transfer between the ER and other organelles, and here, we used a combination of biochemical, cell biology, and genetics approaches to show that AtVAP27-1 interacts with the N termini of AtSEIPIN2 and AtSEIPIN3 and likely supports the normal formation of LDs. This insight indicates that the ER membrane tethering machinery in plant cells could play a role with select SEIPIN isoforms in LD biogenesis at the ER, and additional experimental evidence in Saccharomyces cerevisiae supports the possibility that this interaction may be important in other eukaryotic systems.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Gotas Lipídicas/metabolismo , Proteínas R-SNARE/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Filogenia , Células Vegetales/metabolismo , Plantas Modificadas Genéticamente , Dominios Proteicos , Semillas/metabolismo , Nicotiana/genética , Técnicas del Sistema de Dos Híbridos
4.
Plant Cell ; 25(5): 1726-39, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23667126

RESUMEN

COMPARATIVE GENE IDENTIFICATION-58 (CGI-58) is a key regulator of lipid metabolism and signaling in mammals, but its underlying mechanisms are unclear. Disruption of CGI-58 in either mammals or plants results in a significant increase in triacylglycerol (TAG), suggesting that CGI-58 activity is evolutionarily conserved. However, plants lack proteins that are important for CGI-58 activity in mammals. Here, we demonstrate that CGI-58 functions by interacting with the PEROXISOMAL ABC-TRANSPORTER1 (PXA1), a protein that transports a variety of substrates into peroxisomes for their subsequent metabolism by ß-oxidation, including fatty acids and lipophilic hormone precursors of the jasmonate and auxin biosynthetic pathways. We also show that mutant cgi-58 plants display changes in jasmonate biosynthesis, auxin signaling, and lipid metabolism consistent with reduced PXA1 activity in planta and that, based on the double mutant cgi-58 pxa1, PXA1 is epistatic to CGI-58 in all of these processes. However, CGI-58 was not required for the PXA1-dependent breakdown of TAG in germinated seeds. Collectively, the results reveal that CGI-58 positively regulates many aspects of PXA1 activity in plants and that these two proteins function to coregulate lipid metabolism and signaling, particularly in nonseed vegetative tissues. Similarities and differences of CGI-58 activity in plants versus animals are discussed.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Aciltransferasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metabolismo de los Lípidos , Transportadoras de Casetes de Unión a ATP/genética , Aciltransferasas/genética , Adenosina Trifosfatasas , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Ciclopentanos/metabolismo , Proteínas de Transporte de Ácidos Grasos/genética , Proteínas de Transporte de Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Homeostasis , Hidrolasas/genética , Hidrolasas/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Oxilipinas/metabolismo , Peroxisomas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Unión Proteica , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Triglicéridos/metabolismo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...