Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Phys Chem B ; 127(41): 8950-8960, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37812396

RESUMEN

Water dynamics in mesoporous dextran hydrogel micro/nanoparticles was investigated by means of nuclear magnetic resonance (NMR) techniques. High-resolution 1H NMR spectra and pulsed field gradient (PFG) NMR diffusometry measurements obtained on swollen state dextran micro/nanogel revealed the existence of different fractions of water molecules based on their interaction with the gel matrix. In addition to the translational diffusion of bulk water, two more diffusion processes characterized with self-diffusion coefficients 1 and 2 orders of magnitude smaller than that of bulk water were identified. 1H spin-lattice relaxation dispersion profiles obtained for a broad range of Larmor frequencies using fast field cycling (FFC) and conventional NMR relaxometry techniques allowed us to further clarify the mechanisms of molecular motion. According to the water proton pool fractions and associated self-diffusion coefficients, it is shown that the relaxation contribution associated with reorientation-mediated translational motions (RMTDs) dominates the relaxation dispersion observed at intermediate frequencies. At very low frequencies, the spin-lattice relaxation rate is dominated by the slow solid-gel dynamics probed by the water molecules interacting with the pores' surface hydroxyl groups due to the rapid chemical exchange between surface hydroxyl groups and free water. The correlation time for the thumbling-like motion of the dextran gel was found to be in the submillisecond range. The values of the self-diffusion and coherence lengths associated with motion of water molecules interacting with the solid-gel particles are consistent with the particle size and pore size distributions obtained for the studied dextran gels.

2.
Sci Rep ; 11(1): 16312, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381088

RESUMEN

Compartmental epidemiological models are, by far, the most popular in the study of dynamics related with infectious diseases. It is, therefore, not surprising that they are frequently used to study the current COVID-19 pandemic. Taking advantage of the real-time availability of COVID-19 related data, we perform a compartmental model fitting analysis of the portuguese case, using an online open-access platform with the integrated capability of solving systems of differential equations. This analysis enabled the data-driven validation of the used model and was the basis for robust projections of different future scenarios, namely, increasing the detected infected population, reopening schools at different moments, allowing Easter celebrations to take place and population vaccination. The method presented in this work can easily be used to perform the non-trivial task of simultaneously fitting differential equation solutions to different epidemiological data sets, regardless of the model or country that might be considered in the analysis.


Asunto(s)
COVID-19/epidemiología , Interpretación Estadística de Datos , Métodos Epidemiológicos , Humanos , Modelos Teóricos
3.
J Magn Reson ; 318: 106783, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32755749

RESUMEN

A model of spin-lattice relaxation for spin-1/2 nuclei in the presence of a residual dipole-dipole coupling has been presented. For slow dynamics the model predicts a bi-exponential relaxation at low frequencies, when the residual dipole-dipole interaction dominates the Zeeman coupling. Moreover, according to the model a frequency-specific relaxation enhancement, referred to as Dipolar Relaxation Enhancement (DRE) in analogy to the Quadrupole Relaxation Enhancement (QRE) is expected. The frequency position of the relaxation maximum is determined by the amplitude of the residual dipole-dipole interaction. Experimental examples of relaxation properties that might be attributed to the DRE are presented. The DRE effect has the potential to be exploited, in analogy to QRE, as a unique source of information about molecular dynamics and structure.

4.
Phys Chem Chem Phys ; 21(8): 4523-4537, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30735227

RESUMEN

Molecular order and dynamics of the CB-C9-CB liquid crystalline dimer exhibiting the nematic (N) and the twist bend nematic (Ntb) phases were investigated by proton NMR spectroscopy, using fields of 0.78 T and 7.04 T, and relaxometry. The first relaxometry experiments for a very wide Larmor frequency domain (8 kHz-300 MHz) on this system, using a combination of standard and fast field cycling NMR techniques, were performed. The spectroscopy results in the Ntb phase allowed us to probe the local molecular orientation relative to the Ntb helix axis. The relaxation data were analyzed considering order director fluctuations (ODF), molecular self-diffusion (SD) and local molecular rotations/reorientations (R) relaxation mechanisms. Global fits of theoretical relaxation models, as a function of temperature and Larmor frequency, for the phases under investigation, allowed for the determination of rotational correlation times, diffusion coefficients, viscoelastic parameters, correlation lengths and activation energies (in the case of thermally activated mechanisms). A clear difference between the structures of the N and Ntb phases was detected from the results of proton spin-lattice relaxation through distinct temperature and frequency dependencies' signatures of the collective modes. Significant pre-transitional effects were observed at the N-Ntb phase transition both from relaxometry and spectroscopy data. The experimental results correlate to data and models for comparable liquid crystalline systems.

5.
Solid State Nucl Magn Reson ; 38(1): 36-43, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20688489

RESUMEN

In this paper a new type of Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometer with low power consumption (200W) and cycle to cycle field stability better than 10(-4) is described. The new high-permeability magnet was designed to allow for good magnetic field homogeneity and allows for the sample rotation around an axis perpendicular to magnetic field, operating with magnetic fields between 0 and 0.21T. The power supply of the new relaxometer was specially developed in order to have steady state accurate currents and allow for magnetic field switching times less than 3ms. Additional control circuits were developed and included to compensate the Earth magnetic field component parallel to the field axis and to compensate for parasitic currents. The main aspects of the developed circuits together with some calibrating experimental results using the liquid crystal compounds 5CB and 8CB are presented and discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...