Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 30(5): 1206-1222, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33465828

RESUMEN

Facultative clonality is associated with complex life cycles where sexual and asexual forms can be exposed to contrasting selection pressures. Facultatively clonal animals often have distinct developmental capabilities that depend on reproductive mode (e.g., negligible senescence and exceptional regeneration ability in asexual individuals, which are lacking in sexual individuals). Understanding how these differences in life history strategies evolved is hampered by limited knowledge of the population structure underlying sexual and asexual forms in nature. Here we studied genetic differentiation of coexisting sexual and asexual Hydra oligactis polyps, a freshwater cnidarian where reproductive mode-dependent life history patterns are observed. We collected asexual and sexual polyps from 13 Central European water bodies and used restriction-site associated DNA sequencing to infer population structure. We detected high relatedness among populations and signs that hydras might spread with resting eggs through zoochory. We found no genetic structure with respect to mode of reproduction (asexual vs. sexual). On the other hand, clear evidence was found for phenotypic plasticity in mode of reproduction, as polyps inferred to be clones differed in reproductive mode. Moreover, we detected two cases of apparent sex change (males and females found within the same clonal lineages) in this species with supposedly stable sexes. Our study describes population genetic structure in Hydra for the first time, highlights the role of phenotypic plasticity in generating patterns of life history variation, and contributes to understanding the evolution of reproductive mode-dependent life history variation in coexisting asexual and sexual forms.


Asunto(s)
Hydra , Adaptación Fisiológica , Animales , Femenino , Genotipo , Hydra/genética , Estadios del Ciclo de Vida , Masculino , Reproducción/genética , Reproducción Asexuada/genética
2.
J Anim Ecol ; 89(10): 2246-2257, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32596821

RESUMEN

Asexual reproduction diversifies life-history priorities and is associated with unusual reproduction and somatic maintenance patterns, such as constant fertility with age, extensive regeneration ability and negligible senescence. While age-dependent plasticity in relative allocation to sexual versus asexual reproductive modes is relatively well studied, the modulation of somatic maintenance traits in parallel with age-dependent reproduction is much less well understood in clonal or partially clonal animals. Here, we asked how age-dependent investment into sexual and asexual reproduction co-varies with somatic maintenance such as regeneration in a partially clonal freshwater cnidarian Hydra oligactis, a species with remarkable regeneration abilities and experimentally inducible sex. We induced gametogenesis by lowering temperature at two ages, 1 or 4 weeks after detachment from an asexual parent, in animals of a male and a female clone. Then we measured phenotypically asexual and sexual reproductive traits (budding rate, start day and number of sexual organs) together with head regeneration rate, survival and the cellular background of these traits (number of reproductive and interstitial stem cells) for 2 or 5 months. Younger animals had higher asexual reproduction while individuals in the older group had more intensive gametogenesis and reproductive cell production. In parallel with these age-dependent reproductive differences, somatic maintenance of older individuals was also impacted: head regeneration, survival and interstitial stem cell numbers were reduced compared to younger polyps. Some of the traits investigated showed an ontogenetic effect, suggesting that age-dependent plasticity and a fixed ontogenetic response might both contribute to differences between age groups. We show that in H. oligactis asexual reproduction coupled with higher somatic maintenance is prioritized earlier in life, while sexual reproduction with higher maintenance costs occurs later if sex is induced. These findings confirm general life-history theory predictions on resource allocation between somatic maintenance and sexual reproduction applying in a partially clonal species. At the same time, our study also highlights the age-dependent integration of these resource allocation decisions with sexual/asexual strategies. Accounting for age-related differences might enhance repeatability of research done with clonal individuals derived from mass cultures.


Asunto(s)
Hydra , Animales , Femenino , Fertilidad , Masculino , Fenotipo , Reproducción , Reproducción Asexuada
3.
Zoolog Sci ; 34(4): 318-325, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28770685

RESUMEN

Insulin/insulin-like growth factor signaling (IIS) is thought to be a central mediator of life history traits, but the generality of its role is not clear. Here, we investigated mRNA expression levels of three insulin-like peptide genes, the insulin-like receptor htk7, as well as several antioxidant genes, and the heat-shock protein hsp70 in the freshwater cnidarian Hydra vulgaris. Hydra polyps were exposed to a combination of different levels of food and perceived population density to manipulate life history traits (asexual reproduction and oxidative stress tolerance). We found that stress tolerance and the rate of asexual reproduction increased with food, and that these two effects were in significant interaction. Exposing animals to high perceived density resulted in increased stress tolerance or reduced reproduction only on lower food levels, but not on high food. The insulin-like receptor htk7 and the antioxidant gene catalase were significantly upregulated in the high density treatments. However, the expression level of insulin-like peptide genes, most antioxidant genes, and hsp70 were not affected by the experimental treatments. The higher expression level of htk7 may suggest that animals maintain a higher level of preparedness for insulin-like ligands at high population densities. However, the lack of difference between food levels suggests that IIS is not involved in regulating asexual reproduction and stress tolerance in hydra, or that its role is more subtle than a simple model of life history regulation would suggest.


Asunto(s)
Hydra/fisiología , Insulina/fisiología , Péptidos/metabolismo , Transducción de Señal/fisiología , Animales , Conducta Alimentaria , Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Péptidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico
4.
Zoology (Jena) ; 120: 110-116, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27491450

RESUMEN

Freshwater hydra are among the few animal groups that show negligible senescence and can maintain high survival and reproduction rates when kept under stable conditions in the laboratory. Yet, one species of Hydra (H. oligactis) undergoes a senescence-like process in which polyps degenerate and die after sexual reproduction. The ultimate factors responsible for this phenomenon are unclear. High mortality in reproducing animals could be the consequence of increased allocation of resources to reproduction at the expense of somatic maintenance. This hypothesis predicts that patterns of reproduction and survival are influenced by resource availability. To test this prediction we investigated survival and reproduction at different levels of food availability in 10 lineages of H. oligactis derived from a single Hungarian population. Sexual reproduction was accompanied by reduced survival, but a substantial proportion of animals regenerated after sexual reproduction and continued reproducing asexually. Polyps belonging to different lineages showed differences in their propensity to initiate sexual reproduction, gonad number and survival rate. Food availability significantly affected fecundity (number of eggs or testes produced), with the largest number of gonads being produced by animals kept on a high food regime. On the other hand, survival rate was not affected by the amount of food. These results show that survival is conserved at the expense of reproduction in this population when food is low. It remains a question still to be answered why survival is prioritized over reproduction in this population.


Asunto(s)
Hydra/fisiología , Animales , Metabolismo Energético/fisiología , Hungría , Reproducción/fisiología , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...