Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(3-1): 034607, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632760

RESUMEN

We use a standard minimal active Brownian model to investigate the osmotic-like effective pressure generated by active fluids on fixed hollow inclusions. These inclusions are enclosed by a permeable (albeit nonflexible) membrane, and the interior and exterior regions of the inclusions have different particle motility strengths. We consider both rectangular and disklike inclusions and analyze the effects of various system parameters, such as excluded volume interaction between active particles, hardness of membrane, and active particle density, on the effective pressure produced on the enclosing membrane. We focus on the range of intermediate to high motility strengths and analyze the effective pressure in the steady state. Our findings for the active pressure produced in the interior and exterior regions of the inclusion indicate that the pressure is higher in the region with lower motility due to the relatively stronger accumulation of active particles.

2.
Sci Rep ; 11(1): 23100, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845241

RESUMEN

Using Brownian Dynamics simulations, we study effective interactions mediated between two identical and impermeable disks (inclusions) immersed in a bath of identical, active (self-propelled), Brownian rods in two spatial dimensions, by assuming that the self-propulsion axis of the rods may generally deviate from their longitudinal axis. When the self-propulsion is transverse (perpendicular to the rod axis), the accumulation of active rods around the inclusions is significantly enhanced, causing a more expansive steric layering (ring formation) of the rods around the inclusions, as compared with the reference case of longitudinally self-propelling rods. As a result, the transversally self-propelling rods also mediate a significantly longer ranged effective interaction between the inclusions. The bath-mediated interaction arises due to the overlaps between the active-rod rings formed around the inclusions, as they are brought into small separations. When the self-propulsion axis is tilted relative to the rod axis, we find an asymmetric imbalance of active-rod accumulation around the inclusion dimer. This leads to a noncentral interaction, featuring an anti-parallel pair of transverse force components and, hence, a bath-mediated torque on the dimer.


Asunto(s)
Biofisica/métodos , Coloides/química , Anisotropía , Gravitación , Ensayo de Materiales , Matemática , Fenómenos Mecánicos , Modelos Biológicos , Movimiento , Física
3.
Sci Rep ; 10(1): 15570, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968107

RESUMEN

We study steady-state properties of a bath of active Brownian particles (ABPs) in two dimensions in the presence of two fixed, permeable (hollow) disklike inclusions, whose interior and exterior regions can exhibit mismatching motility (self-propulsion) strengths for the ABPs. We show that such a discontinuous motility field strongly affects spatial distribution of ABPs and thus also the effective interaction mediated between the inclusions through the active bath. Such net interactions arise from soft interfacial repulsions between ABPs that sterically interact with and/or pass through permeable membranes assumed to enclose the inclusions. Both regimes of repulsion and attractive (albeit with different mechanisms) are reported and summarized in overall phase diagrams.

4.
Artículo en Inglés | MEDLINE | ID: mdl-26382353

RESUMEN

In this paper we consider the Bak, Tang, and Wiesenfeld (BTW) sand-pile model with local violation of conservation through annealed and quenched disorder. We have observed that the probability distribution functions of avalanches have two distinct exponents, one of which is associated with the usual BTW model and another one which we propose to belong to a new fixed point; that is, a crossover from the original BTW fixed point to a new fixed point is observed. Through field theoretic calculations, we show that such a perturbation is relevant and takes the system to a new fixed point.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA