Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 22(1): 126, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443119

RESUMEN

BACKGROUND: Biosurfactants are surface-active compounds with environmental and industrial applications. These molecules show higher biocompatibility, stability and efficiency compared to synthetic surfactants. On the other hand, biosurfactants are not cost-competitive to their chemical counterparts. Cost effective technology such as the use of low-cost substrates is a promising approach aimed at reducing the production cost. This study aimed to evaluate the biosurfactant production and activity by the novel strain Rhodococcus sp. SP1d by using different growth substrates. Therefore, to exploit the biosurfactant synthesized by SP1d for environmental applications, the effect of this compound on the bacteria biofilm formation was evaluated. Eventually, for a possible bioremediation application, the biosurfactant properties and its chemical characteristics were investigated using diesel as source of carbon. RESULTS: Rhodococcus sp. SP1d evidence the highest similarity to Rhodococcus globerulus DSM 43954T and the ability to biosynthesize surfactants using a wide range of substrates such as exhausted vegetable oil, mineral oil, butter, n-hexadecane, and diesel. The maximum production of crude biosurfactant after 10 days of incubation was reached on n-hexadecane and diesel with a final yield of 2.38 ± 0.51 and 1.86 ± 0.31 g L- 1 respectively. Biosurfactants produced by SP1d enhanced the biofilm production of P. protegens MP12. Moreover, the results showed the ability of SP1d to produce biosurfactants on diesel even when grown at 10 and 18 °C. The biosurfactant activity was maintained over a wide range of NaCl concentration, pH, and temperature. A concentration of 1000 mg L- 1 of the crude biosurfactant showed an emulsification activity of 55% towards both xylene and olive oil and a reduction of 25.0 mN m- 1 of surface tension of water. Eventually, nuclear magnetic resonance spectroscopy indicated that the biosurfactant is formed by trehalolipids. CONCLUSIONS: The use of low-cost substrates such as exhausted oils and waste butter reduce both the costs of biosurfactant synthesis and the environmental pollution due to the inappropriate disposal of these residues. High production yields, stability and emulsification properties using diesel and n-hexadecane as substrates, make the biosurfactant produced by SP1d a sustainable biocompound for bioremediation purpose. Eventually, the purified biosurfactant improved the biofilm formation of the fungal antagonistic strain P. protegens MP12, and thus seem to be exploitable to increase the adherence and colonization of plant surfaces by this antagonistic strain and possibly enhance antifungal activity.


Asunto(s)
Alcanos , Rhodococcus , Tensoactivos/química , Tensión Superficial , Biodegradación Ambiental
2.
J Ind Microbiol Biotechnol ; 39(1): 175-81, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21739193

RESUMEN

Scotta is the main by-product in the making of ricotta cheese. It is widely produced in southern Europe and particularly in Italy where it represents a serious environmental pollutant due to its high lactose content. With the aim of evaluating whether scotta bioconversion into lactic acid can be considered as an alternative to its disposal, besides providing it with an added value, here the growth, fermentative performances, and lactic acid productions of pure and mixed cultures of Lactobacillus casei, Lactobacillus helveticus, and Streptococcus thermophilus were evaluated on ovine scotta-based media, without and with the addition of nutritional supplements. The outcomes indicate that ovine scotta can be utilized for the biotechnological production of lactic acid with yields up to 92%, comparable to those obtained on cheese-whey. Indeed, the addition of nutritional supplements generally improves the fermentative performances of lactic acid bacteria leading to about 2 g l(-1) h(-1) of lactic acid. Moreover, the use of mixed cultures for scotta bioconversion reduces the need for nutritional supplements, with no detrimental effects on the productive parameters compared to pure cultures. Finally, by using L. casei and S. thermophilus in pure and mixed cultures, up to 99% optically pure L: -lactic acid can be obtained.


Asunto(s)
Queso , Ácido Láctico/biosíntesis , Lactobacillales/metabolismo , Animales , Medios de Cultivo , Fermentación , Microbiología Industrial , Italia , Ácido Láctico/química , Lacticaseibacillus casei/metabolismo , Lactobacillus helveticus/metabolismo , Oveja Doméstica , Streptococcus thermophilus/metabolismo
3.
J Food Sci ; 76(7): N54-60, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21819401

RESUMEN

Plastic is readily available and inexpensive, so it is becoming the main material for packaging. Unfortunately plastics do not biodegrade and, if reduced in small pieces, contaminate soil and waterways. In the present work, natural films composed of chitosan, methylcellulose, and silica (SiO(2)) nanoparticles (NPs) were developed as new packaging materials. The effect of the incorporation of NPs into the polymeric film matrix was evaluated. An excellent improvement of the mechanical properties was obtained for nanostructured films with a composition of CH:MC 50:50 and NPs 1% w/v that make these materials able to replace plastics and derivatives, reducing environmental pollution.


Asunto(s)
Quitosano , Embalaje de Alimentos/instrumentación , Metilcelulosa , Nanopartículas , Biodegradación Ambiental , Tamaño de la Partícula , Permeabilidad , Polímeros , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA