Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Discov ; 9(1): 248, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454169

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders that share genetic causes and pathogenic mechanisms. The critical genetic players of ALS and FTD are the TARDBP, FUS and C9orf72 genes, whose protein products, TDP-43, FUS and the C9orf72-dipeptide repeat proteins, accumulate in form of cytoplasmic inclusions. The majority of the studies focus on the understanding of how cells control TDP-43 and FUS aggregation in the cytoplasm, overlooking how dysfunctions occurring at the nuclear level may influence the maintenance of protein solubility outside of the nucleus. However, protein quality control (PQC) systems that maintain protein homeostasis comprise a cytoplasmic and a nuclear arm that are interconnected and share key players. It is thus conceivable that impairment of the nuclear arm of the PQC may have a negative impact on the cytoplasmic arm of the PQC, contributing to the formation of the cytoplasmic pathological inclusions. Here we focused on two stress-inducible condensates that act as transient deposition sites for misfolding-prone proteins: Promyelocytic leukemia protein (PML) nuclear bodies (PML-NBs) and cytoplasmic stress granules (SGs). Upon stress, PML-NBs compartmentalize misfolded proteins, including defective ribosomal products (DRiPs), and recruit chaperones and proteasomes to promote their nuclear clearance. SGs transiently sequester aggregation-prone RNA-binding proteins linked to ALS-FTD and mRNAs to attenuate their translation. We report that PML assembly is impaired in the human brain and spinal cord of familial C9orf72 and FUS ALS-FTD cases. We also show that defective PML-NB assembly impairs the compartmentalization of DRiPs in the nucleus, leading to their accumulation inside cytoplasmic SGs, negatively influencing SG dynamics. Although it is currently unclear what causes the decrease of PML-NBs in ALS-FTD, our data highlight the existence of a cross-talk between the cytoplasmic and nuclear PQC systems, whose alteration can contribute to SG accumulation and cytoplasmic protein aggregation in ALS-FTD.

2.
Cell Stress Chaperones ; 28(6): 621-629, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37462824

RESUMEN

The Fourth Cell Stress Society International workshop on small heat shock proteins (sHSPs), a follow-up to successful workshops held in 2014, 2016 and 2018, took place as a virtual meeting on the 17-18 November 2022. The meeting was designed to provide an opportunity for those working on sHSPs to reconnect and discuss their latest work. The diversity of research in the sHSP field is reflected in the breadth of topics covered in the talks presented at this meeting. Here we summarise the presentations at this meeting and provide some perspectives on exciting future topics to be addressed in the field.


Asunto(s)
Proteínas de Choque Térmico Pequeñas , Proteínas de Choque Térmico Pequeñas/metabolismo , Proteínas
3.
Pathogens ; 12(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37242317

RESUMEN

Vaccination has drastically decreased mortality due to coronavirus disease 19 (COVID-19), but not the rate of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Alternative strategies such as inhibition of virus entry by interference with angiotensin-I-converting enzyme 2 (ACE2) receptors could be warranted. Cyclodextrins (CDs) are cyclic oligosaccharides that are able to deplete cholesterol from membrane lipid rafts, causing ACE2 receptors to relocate to areas devoid of lipid rafts. To explore the possibility of reducing SARS-CoV-2 entry, we tested hydroxypropyl-ß-cyclodextrin (HPßCD) in a HEK293T-ACE2hi cell line stably overexpressing human ACE2 and Spike-pseudotyped SARS-CoV-2 lentiviral particles. We showed that HPßCD is not toxic to the cells at concentrations up to 5 mM, and that this concentration had no significant effect on cell cycle parameters in any experimental condition tested. Exposure of HEK293T-ACEhi cells to concentrations of HPßCD starting from 2.5 mM to 10 mM showed a concentration-dependent reduction of approximately 50% of the membrane cholesterol content. In addition, incubation of HEK293T-ACEhi cells with HIV-S-CoV-2 pseudotyped particles in the presence of increasing concentrations of HPßCD (from 0.1 to 10 mM) displayed a concentration-dependent effect on SARS-CoV-2 entry efficiency. Significant effects were detected at concentrations at least one order of magnitude lower than the lowest concentration showing toxic effects. These data indicate that HPßCD is a candidate for use as a SARS-CoV-2 prophylactic agent.

4.
Front Immunol ; 13: 1082036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36703981

RESUMEN

Introduction: Alzheimer's disease (AD) is the most frequent cause of dementia and still lacks effective therapy. Clinical signs of AD include low levels of endogenous melanocortins (MCs) and previous studies have shown that treatment with MC analogs induces neuroprotection in the early stages of AD. Methods: We investigated the neuroprotective role of MCs in two transgenic mouse models of severe AD using 5 and 7 month-old (mo) 5XFAD mice and 9 and 12 mo 3xTg mice. These mice were subjected to a chronic stimulation of MC receptors (MCRs) with MC analogue Nle4-D-Phe7-α-melanocyte stimulating hormone (NDP-α-MSH, 340 µg/kg, i.p.). Mouse behavior and ex-vivo histological and biochemical analyses were performed after 50 days of treatment. Results: Our analysis demonstrated an improvement in cognitive abilities of AD mice at late stage of AD progression. We also showed that these protective effects are associated with decreased levels of hyperphosphorylated Tau but not with Aß burden, that was unaffected in the hippocampus and in the cortex of AD mice. In addition, an age-dependent NDP effect on glial reactivity was observed only in 3xTg mice whereas a global downregulation of p38 mitogen-activated protein kinase was selectively observed in 7 mo 5XFAD and 14 mo 3xTg mice. Conclusion: Our results suggest that MCR stimulation by NDP-α-MSH could represent a promising therapeutic strategy in managing cognitive decline also at late stage of AD, whereas the effects on neuroinflammation may be restricted to specific stages of AD progression.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Receptor de Melanocortina Tipo 4 , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Cognición , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Ratones Transgénicos , Receptor de Melanocortina Tipo 4/agonistas
5.
Neurosci Lett ; 754: 135869, 2021 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-33857550

RESUMEN

Intracellular Aß (iAß) expression, extracellular Aß (eAß) plaque formation and microglial reactivity are characteristic neuropathological events of Alzheimer's disease (AD) and have been detected in several transgenic mouse models of this disease. In this work we decided to investigate the early (2-7 months of age) development of these phenomena at both regional and cellular levels in 5XFAD mice, a severe transgenic mouse model of AD. We demonstrated that 1) Aß pathology develops in many but not all brain regions, 2) iAß is transient and almost always followed by eAß in grey matter regions, and the respective levels are roughly proportional, and 3) in about 1/3 of the grey matter regions with Aß pathology and in several white matter regions, eAß plaques can appear where no iAß-positive structures were detected. We also showed that male and female mice share a similar regional and cellular pattern of Aß pathology development that is more prominent in females. Early iAß is associated to the activation of microglia, while subsequent formation of eAß plaques is associated with markedly increased density of microglial cells that acquire a characteristic clustered phenotype. Present analysis is relevant to set a reference for pathophysiological studies and to define specific targets for the test of therapeutic interventions in this widely used AD transgenic model.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Corteza Cerebral/patología , Placa Amiloide/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Péptidos beta-Amiloides/análisis , Animales , Corteza Cerebral/citología , Corteza Cerebral/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Microglía/inmunología , Microglía/metabolismo , Microglía/patología , Placa Amiloide/genética , Placa Amiloide/inmunología , Factores Sexuales
6.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375708

RESUMEN

(1) The human luteinizing hormone (LH)/chorionic gonadotropin (hCG) receptor (LHCGR) discriminates its two hormone ligands and differs from the murine receptor (Lhr) in amino acid residues potentially involved in qualitative discerning of LH and hCG. The latter gonadotropin is absent in rodents. The aim of the study is to identify LHCGR residues involved in hCG/LH discrimination. (2) Eight LHCGR cDNAs were developed, carrying "murinizing" mutations on aminoacidic residues assumed to interact specifically with LH, hCG, or both. HEK293 cells expressing a mutant or the wild type receptor were treated with LH or hCG and the kinetics of cyclic adenosine monophosphate (cAMP) and phosphorylated extracellular signal-regulated kinases 1/2 (pERK1/2) activation was analyzed by bioluminescence resonance energy transfer (BRET). (3) Mutations falling within the receptor leucine reach repeat 9 and 10 (LRR9 and LRR10; K225S +T226I and R247T), of the large extracellular binding domain, are linked to loss of hormone-specific induced cAMP increase, as well as hCG-specific pERK1/2 activation, leading to a Lhr-like modulation of the LHCGR-mediated intracellular signaling pattern. These results support the hypothesis that LHCGR LRR domain is the interaction site of the hormone ß-L2 loop, which differs between LH and hCG, and might be fundamental for inducing gonadotropin-specific signals. (4) Taken together, these data identify LHCGR key residues likely evolved in the human to discriminate LH/hCG specific binding.


Asunto(s)
Aminoácidos/química , Sitios de Unión , Receptores de HL/química , Receptores de HL/metabolismo , Secuencia de Aminoácidos , Gonadotropina Coriónica/metabolismo , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Cinética , Hormona Luteinizante/metabolismo , Proteína Quinasa 1 Activada por Mitógenos , Proteína Quinasa 3 Activada por Mitógenos , Mutación , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores de HL/genética , Transducción de Señal
7.
J Immunol ; 186(12): 6807-14, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21572026

RESUMEN

The clinical manipulation of regulatory T cells (Tregs) represents a promising strategy for the regulation of unwanted immune responses. It is now becoming clear that Tregs exert multiple effects on different cell targets under particular conditions; however, the interplay between these different factors remains unclear. Using mouse Tregs of known Ag specificity, we report in this study two different levels of Treg-mediated suppression: one that targets T cell proliferation and one that targets dendritic cell-mediated proinflammatory chemokine (CCL3 and CCL4) production. These two effects can be dissociated, and whereas modulation of T cell proliferation depends on the strength of the antigenic stimulus, modulation of chemokine production by dendritic cells does not. We also provide evidence that the bystander effect of Tregs on immune responses observed in vivo may be in great part explained by a decrease in the recruitment of target T cells, and therefore in the magnitude of the response, rather than by a direct effect on their priming or proliferation. Overall, our results shed some light on the different aspects that need to be considered when attempting to modulate Tregs for clinical purposes.


Asunto(s)
Proliferación Celular , Quimiocinas/metabolismo , Células Dendríticas/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T/citología , Animales , Efecto Espectador/inmunología , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Inmunidad , Ratones
8.
PLoS One ; 4(11): e7696, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19893746

RESUMEN

BACKGROUND: Although evidence exists that regulatory T cells (Tregs) can suppress the effector phase of immune responses, it is clear that their major role is in suppressing T cell priming in secondary lymphoid organs. Recent experiments using two photon laser microscopy indicate that dendritic cells (DCs) are central to Treg cell function and that the in vivo mechanisms of T cell regulation are more complex than those described in vitro. PRINCIPAL FINDINGS: Here we have sought to determine whether and how modulation of Treg numbers modifies the lymph node (LN) microenvironment. We found that pro-inflammatory chemokines -- CCL2 (MCP-1) and CCL3 (MIP-la) -- are secreted in the LN early (24 h) after T cell activation, that this secretion is dependent on antigen-specific DC-T cell interactions, and that it was inversely related to the frequency of Tregs specific for the same antigen. Furthermore, we demonstrate that Tregs modify the chemoattractant properties of antigen-presenting DCs, which, as the frequency of Tregs increases, fail to produce CCL2 and CCL3 and to attract antigen-specific T cells. CONCLUSIONS: These results substantiate a major role of Tregs in LN patterning during antigen-specific immune responses.


Asunto(s)
Células Presentadoras de Antígenos/citología , Quimiocinas/metabolismo , Células Dendríticas/citología , Regulación de la Expresión Génica , Ganglios Linfáticos/metabolismo , Animales , Proliferación Celular , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Inflamación , Ganglios Linfáticos/patología , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Modelos Biológicos
9.
Biol Reprod ; 78(2): 234-42, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17989360

RESUMEN

The testis is regarded as an immunologically privileged site because it tolerates either autoantigenic germ cells or allografts. Because the blood testis barrier represents an incomplete immunological barrier, we have explored whether Sertoli cells, the somatic cells of the seminiferous epithelium, might play an active role in immune evasion. We report data indicating that B7-H1(officially known as CD274)-mediated co-inhibition, an immunomodulatory mechanism based on cell-cell interaction, can be activated in Sertoli cell-lymphocyte cocultures. We have found that, in response to interferon gamma (IFNG), mouse Sertoli cells strongly up-regulate the negative co-stimulatory ligand B7-H1 but remain devoid of positive co-stimulatory molecules. Blockade of B7-H1 on the Sertoli cell surface resulted in enhanced proliferation of CD8(+) T cells cocultured with Sertoli cells. Moreover, IFNG-stimulated Sertoli cells were found to express, concurrent with B7-H1, MHC class II. Therefore, we have hypothesized that Sertoli cells could function as nonprofessional tolerogenic antigen-presenting cells by inducing enrichment in regulatory T cells (Tregs) in a mixed T lymphocyte population. Interestingly, we found that coculturing T cells with Sertoli cells can indeed induce an increase in CD4(+)CD25(+)(officially known as IL2RA)FOXP3(+) Tregs and a decrease in CD4(+)CD25(-) T cells, suggesting Sertoli cell-mediated Treg conversion; this process was found to be B7-H1-independent. Altogether these data show that Sertoli cells are potentially capable of down-regulating the local immune response, on one hand by directly inhibiting CD8(+) T cell proliferation through B7-H1 and, on the other hand, by inducing an increase in Tregs that might suppress other bystander T cells.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Antígeno B7-1/metabolismo , Glicoproteínas de Membrana/metabolismo , Péptidos/metabolismo , Células de Sertoli/inmunología , Animales , Células Presentadoras de Antígenos/efectos de los fármacos , Antígeno B7-H1 , Antígenos CD4/análisis , Linfocitos T CD8-positivos/inmunología , Factores de Transcripción Forkhead/análisis , Antígenos de Histocompatibilidad Clase II/metabolismo , Interferón gamma/farmacología , Subunidad alfa del Receptor de Interleucina-2/análisis , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Proteínas Recombinantes , Células de Sertoli/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...