Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 17(12): e3000545, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31846454

RESUMEN

Glioblastoma (GB) is the most lethal brain tumor, and Wingless (Wg)-related integration site (WNT) pathway activation in these tumors is associated with a poor prognosis. Clinically, the disease is characterized by progressive neurological deficits. However, whether these symptoms result from direct or indirect damage to neurons is still unresolved. Using Drosophila and primary xenografts as models of human GB, we describe, here, a mechanism that leads to activation of WNT signaling (Wg in Drosophila) in tumor cells. GB cells display a network of tumor microtubes (TMs) that enwrap neurons, accumulate Wg receptor Frizzled1 (Fz1), and, thereby, deplete Wg from neurons, causing neurodegeneration. We have defined this process as "vampirization." Furthermore, GB cells establish a positive feedback loop to promote their expansion, in which the Wg pathway activates cJun N-terminal kinase (JNK) in GB cells, and, in turn, JNK signaling leads to the post-transcriptional up-regulation and accumulation of matrix metalloproteinases (MMPs), which facilitate TMs' infiltration throughout the brain, TMs' network expansion, and further Wg depletion from neurons. Consequently, GB cells proliferate because of the activation of the Wg signaling target, ß-catenin, and neurons degenerate because of Wg signaling extinction. Our findings reveal a molecular mechanism for TM production, infiltration, and maintenance that can explain both neuron-dependent tumor progression and also the neural decay associated with GB.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Metaloproteinasas de la Matriz/metabolismo , Neuronas/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Animales Modificados Genéticamente , Neoplasias Encefálicas/patología , Comunicación Celular/fisiología , Línea Celular Tumoral , Progresión de la Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Receptores Frizzled/metabolismo , Glioblastoma/patología , Xenoinjertos , Humanos , Masculino , Microtúbulos/metabolismo , Neuronas/patología , Proteína Wnt1/metabolismo
2.
EMBO J ; 36(12): 1688-1706, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28465321

RESUMEN

Retinal ganglion cells (RGCs) are the sole projecting neurons of the retina and their axons form the optic nerve. Here, we show that embryogenesis-associated mouse RGC differentiation depends on mitophagy, the programmed autophagic clearance of mitochondria. The elimination of mitochondria during RGC differentiation was coupled to a metabolic shift with increased lactate production and elevated expression of glycolytic enzymes at the mRNA level. Pharmacological and genetic inhibition of either mitophagy or glycolysis consistently inhibited RGC differentiation. Local hypoxia triggered expression of the mitophagy regulator BCL2/adenovirus E1B 19-kDa-interacting protein 3-like (BNIP3L, best known as NIX) at peak RGC differentiation. Retinas from NIX-deficient mice displayed increased mitochondrial mass, reduced expression of glycolytic enzymes and decreased neuronal differentiation. Similarly, we provide evidence that NIX-dependent mitophagy contributes to mitochondrial elimination during macrophage polarization towards the proinflammatory and more glycolytic M1 phenotype, but not to M2 macrophage differentiation, which primarily relies on oxidative phosphorylation. In summary, developmentally controlled mitophagy promotes a metabolic switch towards glycolysis, which in turn contributes to cellular differentiation in several distinct developmental contexts.


Asunto(s)
Diferenciación Celular , Glucólisis , Mitofagia , Retina/embriología , Células Ganglionares de la Retina/fisiología , Animales , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/metabolismo
3.
Nat Cell Biol ; 17(10): 1304-16, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26322680

RESUMEN

Blocking mitotic progression has been proposed as an attractive therapeutic strategy to impair proliferation of tumour cells. However, how cells survive during prolonged mitotic arrest is not well understood. We show here that survival during mitotic arrest is affected by the special energetic requirements of mitotic cells. Prolonged mitotic arrest results in mitophagy-dependent loss of mitochondria, accompanied by reduced ATP levels and the activation of AMPK. Oxidative respiration is replaced by glycolysis owing to AMPK-dependent phosphorylation of PFKFB3 and increased production of this protein as a consequence of mitotic-specific translational activation of its mRNA. Induction of autophagy or inhibition of AMPK or PFKFB3 results in enhanced cell death in mitosis and improves the anti-tumoral efficiency of microtubule poisons in breast cancer cells. Thus, survival of mitotic-arrested cells is limited by their metabolic requirements, a feature with potential implications in cancer therapies aimed to impair mitosis or metabolism in tumour cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/fisiología , Fibroblastos/metabolismo , Glucólisis , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Fosfofructoquinasa-2/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/fisiología , Autofagia/genética , Western Blotting , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/ultraestructura , Humanos , Puntos de Control de la Fase M del Ciclo Celular/genética , Células MCF-7 , Ratones Noqueados , Ratones Desnudos , Microscopía Confocal , Paclitaxel/farmacología , Fosfofructoquinasa-2/genética , Interferencia de ARN , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Autophagy ; 11(5): 833-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25945953

RESUMEN

Mitochondrial autophagy, also known as mitophagy, is an autophagosome-based mitochondrial degradation process that eliminates unwanted or damaged mitochondria after cell stress. Most studies dealing with mitophagy rely on the analysis by fluorescence microscopy of mitochondrial-autophagosome colocalization. However, given the fundamental role of mitophagy in the physiology and pathology of organisms, there is an urgent need for novel quantitative methods with which to study this process. Here, we describe a flow cytometry-based approach to determine mitophagy by using MitoTracker Deep Red, a widely used mitochondria-selective probe. Used in combination with selective inhibitors it may allow for the determination of mitophagy flux. Here, we test the validity of the use of this method in cell lines and in primary cell and tissue cultures.


Asunto(s)
Citometría de Flujo/métodos , Mitofagia , Aminoácidos/deficiencia , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Flavonoides/farmacología , Flavonoles , Células HeLa , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Niacinamida/farmacología , Retina/efectos de los fármacos , Retina/metabolismo , Retinitis Pigmentosa/patología
5.
Histochem Cell Biol ; 139(5): 659-70, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23203316

RESUMEN

Autophagic and endo-lysosomal degradative pathways are essential for cell homeostasis. Availability of reliable tools to interrogate these pathways is critical to unveil their involvement in physiology and pathophysiology. Although several probes have been recently developed to monitor autophagic or lysosomal compartments, their specificity has not been validated through co-localization studies with well-known markers. Here, we evaluate the selectivity and interactions between one lysosomal (Lyso-ID) and one autophagosomal (Cyto-ID) probe under conditions modulating autophagy and/or endo-lysosomal function in live cells. The probe for acidic compartments Lyso-ID was fully localized inside vesicles positive for markers of late endosome-lysosomes, including Lamp1-GFP and GFP-CINCCKVL. Induction of autophagy by amino acid deprivation in bovine aortic endothelial cells caused an early and potent increase in the fluorescence of the proposed autophagy dye Cyto-ID. Cyto-ID-positive compartments extensively co-localized with the autophagosomal fluorescent reporter RFP-LC3, although the time and/or threshold for organelle detection was different for each probe. Interestingly, use of Cyto-ID in combination with Lysotracker Red or Lyso-ID allowed the observation of structures labeled with either one or both probes, the extent of co-localization increasing upon treatment with protease inhibitors. Inhibition of the endo-lysosomal pathway with chloroquine or U18666A resulted in the formation of large Cyto-ID and Lyso-ID-positive compartments. These results constitute the first assessment of the selectivity of Cyto-ID and Lyso-ID as probes for the autophagic and lysosomal pathways, respectively. Our observations show that these probes can be used in combination with protein-based markers for monitoring the interactions of both pathways in live cells.


Asunto(s)
Autofagia , Células Endoteliales/citología , Células Endoteliales/metabolismo , Lisosomas/metabolismo , Animales , Biomarcadores/metabolismo , Bovinos , Células Cultivadas
6.
J Cell Sci ; 123(Pt 15): 2586-95, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20605920

RESUMEN

RINGO/Speedy proteins are direct activators of Cdk1 and Cdk2 that have no sequence homology to cyclins. We have characterized the role in cell-cycle progression of a new human member of this protein family referred to as RINGO C. We show that siRNA-mediated knockdown of RINGO C results in premature mitotic exit with misaligned chromosomes, even in the presence of microtubule poisons. Time-lapse-microscopy experiments suggest that RINGO C is involved in the spindle-assembly checkpoint (SAC). Consistent with this idea, RINGO-C-depleted cells show impaired recruitment of the SAC components Mad2, Bub1 and BubR1. As the checkpoint is overridden, cells display defective chromosome segregation, which leads to an increased number of micronuclei and binucleated structures. Intriguingly, we found that RINGO C can associate with the mitotic kinase Aurora B, and downregulation of RINGO C produces mislocalization of the active form of Aurora B in prometaphase. Taken together, our results indicate a role for RINGO C in the mitotic checkpoint, which might be mediated by defective recruitment of SAC components and deregulation of the activity of Aurora kinase B.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Huso Acromático/metabolismo , Aurora Quinasa B , Aurora Quinasas , Proteínas de Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Cromosomas Humanos/efectos de los fármacos , Cromosomas Humanos/genética , Citometría de Flujo , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Cinetocoros/metabolismo , Metafase/efectos de los fármacos , Metafase/genética , Microscopía Confocal , Microscopía Fluorescente , Mitosis/efectos de los fármacos , Mitosis/genética , Nocodazol/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Huso Acromático/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...