Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 10: 1173674, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538309

RESUMEN

Background: Disease severity of autosomal dominant polycystic kidney disease (ADPKD) is influenced by diet. Dietary protein, a recognized cyst-accelerating factor, is catabolized into amino acids (AA) and delivered to the kidney leading to renal hypertrophy. Injury-induced hypertrophic signaling in ADPKD results in increased macrophage (MФ) activation and inflammation followed by cyst growth. We hypothesize that the cystogenesis-prompting effects of HP diet are caused by increased delivery of specific AA to the kidney, ultimately stimulating MФs to promote cyst progression. Methods: Pkd1flox/flox mice with and without Cre (CAGG-ER) were given tamoxifen to induce global gene deletion (Pkd1KO). Pkd1KO mice were fed either a low (LP; 6%), normal (NP; 18%), or high (HP; 60%) protein diet for 1 week (early) or 6 weeks (chronic). Mice were then euthanized and tissues were used for histology, immunofluorescence and various biochemical assays. One week fed kidney tissue was cell sorted to isolate tubular epithelial cells for RNA sequencing. Results: Chronic dietary protein load in Pkd1KO mice increased kidney weight, number of kidney infiltrating and resident MФs, chemokines, cytokines and cystic index compared to LP diet fed mice. Accelerated cyst growth induced by chronic HP were attenuated by liposomal clodronate-mediated MФ depletion. Early HP diet fed Pkd1KO mice had larger cystic kidneys compared to NP or LP fed counterparts, but without increases in the number of kidney MФs, cytokines, or markers of tubular injury. RNA sequencing of tubular epithelial cells in HP compared to NP or LP diet group revealed increased expression of sodium-glutamine transporter Snat3, chloride channel Clcnka, and gluconeogenesis marker Pepck1, accompanied by increased excretion of urinary ammonia, a byproduct of glutamine. Early glutamine supplementation in Pkd1KO mice lead to kidney hypertrophy. Conclusion: Chronic dietary protein load-induced renal hypertrophy and accelerated cyst growth in Pkd1KO mice is dependent on both infiltrating and resident MФ recruitment and subsequent inflammatory response. Early cyst expansion by HP diet, however, is relient on increased delivery of glutamine to kidney epithelial cells, driving downstream metabolic changes prior to inflammatory provocation.

2.
J Am Heart Assoc ; 11(5): e020450, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35191321

RESUMEN

Background Premenopausal women are less likely to develop hypertension and salt-related complications than are men, yet the impact of sex on mechanisms regulating Na+ homeostasis during dietary salt challenges is poorly defined. Here, we determined whether female rats have a more efficient capacity to acclimate to increased dietary salt intake challenge. Methods and Results Age-matched male and female Sprague Dawley rats maintained on a normal-salt (NS) diet (0.49% NaCl) were challenged with a 5-day high-salt diet (4.0% NaCl). We assessed serum, urinary, skin, and muscle electrolytes; total body water; and kidney Na+ transporters during the NS and high-salt diet phases. During the 5-day high-salt challenge, natriuresis increased more rapidly in females, whereas serum Na+ and body water concentration increased only in males. To determine if females are primed to handle changes in dietary salt, we asked the question whether the renal endothelin-1 natriuretic system is more active in female rats, compared with males. During the NS diet, female rats had a higher urinary endothelin-1 excretion rate than males. Moreover, Ingenuity Pathway Analysis of RNA sequencing data identified the enrichment of endothelin signaling pathway transcripts in the inner medulla of kidneys from NS-fed female rats compared with male counterparts. Notably, in human subjects who consumed an Na+-controlled diet (3314-3668 mg/day) for 3 days, women had a higher urinary endothelin-1 excretion rate than men, consistent with our findings in NS-fed rats. Conclusions These results suggest that female sex confers a greater ability to maintain Na+ homeostasis during acclimation to dietary Na+ challenges and indicate that the intrarenal endothelin-1 natriuretic pathway is enhanced in women.


Asunto(s)
Cloruro de Sodio Dietético , Cloruro de Sodio , Aclimatación , Animales , Presión Sanguínea , Dieta , Endotelina-1/metabolismo , Femenino , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Sodio , Cloruro de Sodio Dietético/metabolismo
3.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R960-R971, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33881363

RESUMEN

The liver plays a central role that influences cardiovascular disease outcomes through regulation of glucose and lipid metabolism. It is recognized that the local liver molecular clock regulates some liver-derived metabolites. However, it is unknown whether the liver clock may impact cardiovascular function. Perivascular adipose tissue (PVAT) is a specialized type of adipose tissue surrounding blood vessels. Importantly, cross talk between the endothelium and PVAT via vasoactive factors is critical for vascular function. Therefore, we designed studies to test the hypothesis that cardiovascular function, including PVAT function, is impaired in mice with liver-specific circadian clock disruption. Bmal1 is a core circadian clock gene, thus studies were undertaken in male hepatocyte-specific Bmal1 knockout (HBK) mice and littermate controls (i.e., flox mice). HBK mice showed significantly elevated plasma levels of ß-hydroxybutyrate, nonesterified fatty acids/free fatty acids, triglycerides, and insulin-like growth factor 1 compared with flox mice. Thoracic aorta PVAT in HBK mice had increased mRNA expression of several key regulatory and metabolic genes, Ppargc1a, Pparg, Adipoq, Lpl, and Ucp1, suggesting altered PVAT energy metabolism and thermogenesis. Sensitivity to acetylcholine-induced vasorelaxation was significantly decreased in the aortae of HBK mice with PVAT attached compared with aortae of HBK mice with PVAT removed, however, aortic vasorelaxation in flox mice showed no differences with or without attached PVAT. HBK mice had a significantly lower systolic blood pressure during the inactive period of the day. These new findings establish a novel role of the liver circadian clock in regulating PVAT metabolic gene expression and PVAT-mediated aortic vascular function.


Asunto(s)
Tejido Adiposo/metabolismo , Relojes Circadianos/fisiología , Hepatocitos/metabolismo , Hígado/fisiología , Animales , Presión Sanguínea/fisiología , Expresión Génica/fisiología , Hígado/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
4.
Am J Physiol Regul Integr Comp Physiol ; 320(5): R630-R640, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33624556

RESUMEN

Despite advancements in disease management, sickle cell nephropathy, a major contributor to mortality and morbidity in patients, has limited therapeutic options. Previous studies indicate hydroxyurea, a commonly prescribed therapy for sickle cell disease (SCD), can reduce renal injury in SCD but the mechanisms are uncertain. Because SCD is associated with reduced nitric oxide (NO) bioavailability, we hypothesized that hydroxyurea treatment would improve NO bioavailability in the humanized sickle cell mouse. Humanized male 12-wk-old sickle (HbSS) and genetic control (HbAA) mice were treated with hydroxyurea or regular tap water for 2 wk before renal and systemic NO bioavailability as well as renal injury were assessed. Untreated HbSS mice exhibited increased proteinuria, elevated plasma endothelin-1 (ET-1), and reduced urine concentrating ability compared with HbAA mice. Hydroxyurea reduced proteinuria and plasma ET-1 levels in HbSS mice. Untreated HbSS mice had reduced plasma nitrite and elevated plasma arginase concentrations compared with HbAA mice. Hydroxyurea treatment augmented plasma nitrite and attenuated plasma arginase in HbSS mice. Renal vessels isolated from HbSS mice also had elevated nitric oxide synthase 3 (NOS3) and arginase 2 expression compared with untreated HbAA mice. Hydroxyurea treatment did not alter renal vascular NOS3, however, renal vascular arginase 2 expression was significantly reduced. These data support the hypothesis that hydroxyurea treatment augments renal and systemic NO bioavailability by reducing arginase activity as a potential mechanism for the improvement on renal injury seen in SCD mice.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Antidrepanocíticos/farmacología , Hidroxiurea/farmacología , Enfermedades Renales/tratamiento farmacológico , Riñón/efectos de los fármacos , Óxido Nítrico/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Animales , Arginasa/metabolismo , Modelos Animales de Enfermedad , Hemoglobina A/genética , Hemoglobina A/metabolismo , Hemoglobina Falciforme/genética , Hemoglobina Falciforme/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteinuria/tratamiento farmacológico , Proteinuria/genética , Proteinuria/metabolismo
6.
Am J Physiol Renal Physiol ; 320(3): F297-F307, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356953

RESUMEN

We reported that high salt (HS) intake stimulates renal collecting duct (CD) endothelin (ET) type B receptor (ETBR)/nitric oxide (NO) synthase 1ß (NOS1ß)-dependent NO production inhibiting the epithelial sodium channel (ENaC) promoting natriuresis. However, the mechanism underlying the HS-induced increase of NO production is unclear. Histone deacetylase 1 (HDAC1) responds to increased fluid flow, as can occur in the CD during HS intake. The renal inner medulla (IM), in particular the IMCD, has the highest NOS1 activity within the kidney. Hence, we hypothesized that HS intake provokes HDAC1 activation of NO production in the IM. HS intake for 1 wk significantly increased HDAC1 abundance in the IM. Ex vivo treatment of dissociated IM from HS-fed mice with a selective HDAC1 inhibitor (MS-275) decreased NO production with no change in ET-1 peptide or mRNA levels. We further investigated the role of the ET-1/ETBR/NOS1ß signaling pathway with chronic ETBR blockade (A-192621). Although NO was decreased and ET-1 levels were elevated in the dissociated IM from HS-fed mice treated with A-192621, ex vivo MS-275 did not further change NO or ET-1 levels suggesting that HDAC1-mediated NO production is regulated at the level or downstream of ETBR activation. In split-open CDs from HS-fed mice, patch clamp analysis revealed significantly higher ENaC activity after MS-275 pretreatment, which was abrogated by an exogenous NO donor. Moreover, flow-induced increases in mIMCD-3 cell NO production were blunted by HDAC1 or calcium inhibition. Taken together, these findings indicate that HS intake induces HDAC1-dependent activation of the ETBR/NO pathway contributing to the natriuretic response.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Túbulos Renales Colectores/enzimología , Natriuresis , Óxido Nítrico/metabolismo , Eliminación Renal , Cloruro de Sodio Dietético/administración & dosificación , Animales , Endotelina-1/metabolismo , Masculino , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo I/metabolismo , Receptor de Endotelina B/metabolismo , Transducción de Señal , Cloruro de Sodio Dietético/orina
7.
JCI Insight ; 5(16)2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32673289

RESUMEN

Histone deacetylase (HDAC) enzymes regulate transcription through epigenetic modification of chromatin structure, but their specific functions in the kidney remain elusive. We discovered that the human kidney expresses class I HDACs. Kidney medulla-specific inhibition of class I HDACs in the rat during high-salt feeding results in hypertension, polyuria, hypokalemia, and nitric oxide deficiency. Three new inducible murine models were used to determine that HDAC1 and HDAC2 in the kidney epithelium are necessary for maintaining epithelial integrity and maintaining fluid-electrolyte balance during increased dietary sodium intake. Moreover, single-nucleus RNA-sequencing determined that epithelial HDAC1 and HDAC2 are necessary for expression of many sodium or water transporters and channels. In performing a systematic review and meta-analysis of serious adverse events associated with clinical HDAC inhibitor use, we found that HDAC inhibitors increased the odds ratio of experiencing fluid-electrolyte disorders, such as hypokalemia. This study provides insight on the mechanisms of potential serious adverse events with HDAC inhibitors, which may be fatal to critically ill patients. In conclusion, kidney tubular HDACs provide a link between the environment, such as consumption of high-salt diets, and regulation of homeostatic mechanisms to remain in fluid-electrolyte balance.


Asunto(s)
Electrólitos/metabolismo , Inhibidores de Histona Desacetilasas/efectos adversos , Histona Desacetilasas/metabolismo , Médula Renal/metabolismo , Animales , Benzamidas/farmacología , Presión Sanguínea/efectos de los fármacos , Femenino , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Médula Renal/efectos de los fármacos , Médula Renal/fisiopatología , Masculino , Óxido Nítrico/metabolismo , Potasio/sangre , Piridinas/farmacología , Ratas Sprague-Dawley , Cloruro de Sodio Dietético/farmacología , Equilibrio Hidroelectrolítico/fisiología
8.
J Am Heart Assoc ; 9(10): e015110, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32390531

RESUMEN

Background The novel estrogen receptor, G-protein-coupled estrogen receptor (GPER), is responsible for rapid estrogen signaling. GPER activation elicits cardiovascular and nephroprotective effects against salt-induced complications, yet there is no direct evidence for GPER control of renal Na+ handling. We hypothesized that GPER activation in the renal medulla facilitates Na+ excretion. Methods and Results Herein, we show that infusion of the GPER agonist, G1, to the renal medulla increased Na+ excretion in female Sprague Dawley rats, but not male rats. We found that GPER mRNA expression and protein abundance were markedly higher in outer medullary tissues from females relative to males. Blockade of GPER in the renal medulla attenuated Na+ excretion in females. Given that medullary endothelin 1 is a well-established natriuretic factor that is regulated by sex and sex steroids, we hypothesized that GPER activation promotes natriuresis via an endothelin 1-dependent pathway. To test this mechanism, we determined the effect of medullary infusion of G1 after blockade of endothelin receptors. Dual endothelin receptor subtype A and endothelin receptor subtype B antagonism attenuated G1-induced natriuresis in females. Unlike males, female mice with genetic deletion of GPER had reduced endothelin 1, endothelin receptor subtype A, and endothelin receptor subtype B mRNA expression compared with wild-type controls. More important, we found that systemic GPER activation ameliorates the increase in mean arterial pressure induced by ovariectomy. Conclusions Our data uncover a novel role for renal medullary GPER in promoting Na+ excretion via an endothelin 1-dependent pathway in female rats, but not in males. These results highlight GPER as a potential therapeutic target for salt-sensitive hypertension in postmenopausal women.


Asunto(s)
Médula Renal/metabolismo , Natriuresis , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Ciclopentanos/farmacología , Endotelina-1/genética , Endotelina-1/metabolismo , Estradiol/metabolismo , Estrógenos/farmacología , Femenino , Médula Renal/efectos de los fármacos , Masculino , Ratones Noqueados , Natriuresis/efectos de los fármacos , Ovariectomía , Quinolinas/farmacología , Ratas Sprague-Dawley , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismo , Receptores de Estrógenos/deficiencia , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Factores Sexuales , Transducción de Señal
9.
Am J Physiol Renal Physiol ; 318(3): F710-F719, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31904281

RESUMEN

Kidney function follows a 24-h rhythm subject to regulation by circadian genes including the transcription factor Bmal1. A high-salt diet induces a phase shift in Bmal1 expression in the renal inner medulla that is dependent on endothelin type B (ETB) receptors. Furthermore, ETB receptor-mediated natriuresis is sex dependent. Therefore, experiments tested the hypothesis that collecting duct Bmal1 regulates blood pressure in a sex-dependent manner. We generated a mouse model that lacks Bmal1 expression in the collecting duct, where ETB receptor abundance is highest. Male, but not female, collecting duct Bmal1 knockout (CDBmal1KO) mice had significantly lower 24-h mean arterial pressure (MAP) than flox controls (105 ± 2 vs. 112 ± 3 mmHg for male mice and 106 ± 1 vs. 108 ± 1 mmHg for female mice, by telemetry). After 6 days on a high-salt (4% NaCl) diet, MAP remained significantly lower in male CDBmal1KO mice than in male flox control mice (107 ± 2 vs. 113 ± 1 mmHg), with no significant differences between genotypes in female mice (108 ± 2 vs. 109 ± 1 mmHg). ETB receptor blockade for another 6 days increased MAP similarly in both male and female CDBmal1KO and flox control mice. However, MAP remained lower in male CDBmal1KO mice than in male flox control mice (124 ± 2 vs. 130 ± 2 mmHg). No significant differences were observed between female CDBmal1KO and flox mice during ETB blockade (130 ± 2 vs. 127 ± 2 mmHg). There were no significant genotype differences in amplitude or phase of MAP in either sex. These data suggest that collecting duct Bmal1 has no role in circadian MAP but plays an important role in overall blood pressure in male, but not female, mice.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Presión Sanguínea/fisiología , Regulación de la Expresión Génica/fisiología , Túbulos Renales Colectores/metabolismo , Factores de Transcripción ARNTL/genética , Aldosterona/metabolismo , Aldosterona/orina , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Potasio/orina , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismo , Factores Sexuales , Sodio/metabolismo , Sodio/orina , Cloruro de Sodio Dietético/administración & dosificación
10.
J Am Heart Assoc ; 8(9): e011856, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30995881

RESUMEN

Background The redox-sensitive chaperone DJ -1 and uncoupling protein 2 are protective against mitochondrial oxidative stress. We previously reported that renal-selective depletion and germline deletion of DJ -1 increases blood pressure in mice. This study aimed to determine the mechanisms involved in the oxidative stress-mediated hypertension in DJ -1 -/- mice. Methods and Results There were no differences in sodium excretion, renal renin expression, renal NADPH oxidase activity, and serum creatinine levels between DJ -1 -/- and wild-type mice. Renal expression of nitro-tyrosine, malondialdehyde, and urinary kidney injury marker-1 were increased in DJ -1 -/- mice relative to wild-type littermates. mRNA expression of mitochondrial heat shock protein 60 was also elevated in kidneys from DJ -1 -/- mice, indicating the presence of oxidative stress. Tempol-treated DJ -1 -/- mice presented higher serum nitrite/nitrate levels than vehicle-treated DJ -1 -/- mice, suggesting a role of the NO system in the high blood pressure of this model. Tempol treatment normalized renal kidney injury marker-1 and malondialdehyde expression as well as blood pressure in DJ -1 -/- mice, but had no effect in wild-type mice. The renal Ucp2 mRNA expression was increased in DJ -1 -/- mice versus wild-type and was also normalized by tempol. The renal-selective silencing of Ucp2 led to normalization of blood pressure and serum nitrite/nitrate ratio in DJ -1 -/- mice. Conclusions The deletion of DJ -1 leads to oxidative stress-induced hypertension associated with downregulation of NO function, and overexpression of Ucp2 in the kidney increases blood pressure in DJ -1 -/- mice. To our knowledge, this is the first report providing evidence of the role of uncoupling protein 2 in blood pressure regulation.


Asunto(s)
Presión Sanguínea , Hipertensión/enzimología , Riñón/enzimología , Proteína Desglicasa DJ-1/deficiencia , Proteína Desacopladora 2/metabolismo , Animales , Chaperonina 60/genética , Chaperonina 60/metabolismo , Modelos Animales de Enfermedad , Hipertensión/genética , Hipertensión/fisiopatología , Riñón/fisiopatología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo , Proteína Desglicasa DJ-1/genética , Transducción de Señal , Proteína Desacopladora 2/genética , Regulación hacia Arriba
11.
Acta Physiol (Oxf) ; 226(1): e13227, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30501003

RESUMEN

AIM: Chronic high salt intake exaggerates renal injury and inflammation, especially with the loss of functional ETB receptors. Tauroursodeoxycholic acid (TUDCA) is a chemical chaperone and bile salt that is approved for the treatment of hepatic diseases. Our aim was to determine whether TUDCA is reno-protective in a model of ETB receptor deficiency with chronic high salt-induced renal injury and inflammation. METHODS: ETB -deficient and transgenic control rats were placed on normal (0.8% NaCl) or high salt (8% NaCl) diet for 3 weeks, receiving TUDCA (400 mg/kg/d; ip) or vehicle. Histological and biochemical markers of kidney injury, renal cell death and renal inflammation were assessed. RESULTS: In ETB -deficient rats, high salt diet significantly increased glomerular and proximal tubular histological injury, proteinuria, albuminuria, excretion of tubular injury markers KIM-1 and NGAL, renal cortical cell death and renal CD4+ T cell numbers. TUDCA treatment increased proximal tubule megalin expression as well as prevented high salt diet-induced glomerular and tubular damage in ETB -deficient rats, as indicated by reduced kidney injury markers, decreased glomerular permeability and proximal tubule brush border restoration, as well as reduced renal inflammation. However, TUDCA had no significant effect on blood pressure. CONCLUSIONS: TUDCA protects against the development of glomerular and proximal tubular damage, decreases renal cell death and inflammation in the renal cortex in rats with ETB receptor dysfunction on a chronic high salt diet. These results highlight the potential use of TUDCA as a preventive tool against chronic high salt induced renal damage.


Asunto(s)
Inflamación/inducido químicamente , Enfermedades Renales/inducido químicamente , Cloruro de Sodio Dietético/administración & dosificación , Cloruro de Sodio Dietético/efectos adversos , Ácido Tauroquenodesoxicólico/farmacología , Animales , Animales Modificados Genéticamente , Eliminación de Gen , Inflamación/prevención & control , Enfermedades Renales/prevención & control , Masculino , Distribución Aleatoria , Ratas , Receptor de Endotelina B/genética
12.
Neuro Oncol ; 20(8): 1055-1067, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29409010

RESUMEN

Background: Depending on the level, differentiation state, and tumor stage, reactive nitrogen and oxygen species inhibit or increase cancer growth and tumor initiating cell maintenance. The rate-limiting enzyme in a pathway that can regulate reactive species production but has not been thoroughly investigated in glioblastoma (GBM; grade IV astrocytoma) is guanosine triphosphate (GTP) cyclohydrolase 1 (GCH1). We sought to define the role of GCH1 in the regulation of GBM growth and brain tumor initiating cell (BTIC) maintenance. Methods: We examined GCH1 mRNA and protein expression in patient-derived xenografts, clinical samples, and glioma gene expression datasets. GCH1 levels were modulated using lentiviral expression systems, and effects on cell growth, self-renewal, reactive species production, and survival in orthotopic patient-derived xenograft models were determined. Results: GCH1 was expressed in GBMs with elevated but not exclusive RNA and protein levels in BTICs in comparison to non-BTICs. Overexpression of GCH1 in GBM cells increased cell growth in vitro and decreased survival in an intracranial GBM mouse model. In converse experiments, GCH1 knockdown with short hairpin RNA led to GBM cell growth inhibition and reduced self-renewal in association with decreased CD44 expression. GCH1 was critical for controlling reactive species balance, including suppressing reactive oxygen species production, which mediated GCH1 cell growth effects. In silico analyses demonstrated that higher GCH1 levels in glioma patients correlate with higher glioma grade, recurrence, and worse survival. Conclusions: GCH1 expression in established GBMs is pro-tumorigenic, causing increased growth due, in part, to promotion of BTIC maintenance and suppression of reactive oxygen species.


Asunto(s)
Neoplasias Encefálicas/patología , GTP Ciclohidrolasa/metabolismo , Glioblastoma/patología , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/patología , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogénesis , GTP Ciclohidrolasa/antagonistas & inhibidores , GTP Ciclohidrolasa/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Ratones , Ratones Desnudos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Células Madre Neoplásicas/metabolismo , Pronóstico , ARN Interferente Pequeño/genética , Transducción de Señal , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...