Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39282298

RESUMEN

Protein aggregates are emerging therapeutic targets in rare monogenic causes of cardiomyopathy and amyloid heart disease, but their role in more prevalent heart failure syndromes remains mechanistically unexamined. We observed mis-localization of desmin and sarcomeric proteins to aggregates in human myocardium with ischemic cardiomyopathy and in mouse hearts with post-myocardial infarction ventricular remodeling, mimicking findings of autosomal-dominant cardiomyopathy induced by R120G mutation in the cognate chaperone protein, CRYAB. In both syndromes, we demonstrate increased partitioning of CRYAB phosphorylated on serine-59 to NP40-insoluble aggregate-rich biochemical fraction. While CRYAB undergoes phase separation to form condensates, the phospho-mimetic mutation of serine-59 to aspartate (S59D) in CRYAB mimics R120G-CRYAB mutants with reduced condensate fluidity, formation of protein aggregates and increased cell death. Conversely, changing serine to alanine (phosphorylation-deficient mutation) at position 59 (S59A) restored condensate fluidity, and reduced both R120G-CRYAB aggregates and cell death. In mice, S59D CRYAB knock-in was sufficient to induce desmin mis-localization and myocardial protein aggregates, while S59A CRYAB knock-in rescued left ventricular systolic dysfunction post-myocardial infarction and preserved desmin localization with reduced myocardial protein aggregates. 25-Hydroxycholesterol attenuated CRYAB serine-59 phosphorylation and rescued post-myocardial infarction adverse remodeling. Thus, targeting CRYAB phosphorylation-induced condensatopathy is an attractive strategy to counter ischemic cardiomyopathy.

2.
Autophagy ; : 1-3, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39212197

RESUMEN

Acute nutrient deprivation (fasting) causes an immediate increase in spermidine biosynthesis in yeast, flies, mice and humans, as corroborated in four independent clinical studies. This fasting-induced surge in spermidine constitutes the critical first step of a phylogenetically conserved biochemical cascade that leads to spermidine-dependent hypusination of EIF5A (eukaryotic translation initiation factor 5A), which favors the translation of the pro-macroautophagic/autophagic TFEB (transcription factor EB), and hence an increase in autophagic flux. We observed that genetic or pharmacological inhibition of the spermidine increase by inhibition of ODC1 (ornithine decarboxylase 1) prevents the pro-autophagic and antiaging effects of fasting in yeast, nematodes, flies and mice. Moreover, knockout or knockdown of the enzymes required for EIF5A hypusination abolish fasting-mediated autophagy enhancement and longevity extension in these organisms. Of note, autophagy and longevity induced by rapamycin obey the same rule, meaning that they are tied to an increase in spermidine synthesis. These findings indicate that spermidine is not only a "caloric restriction mimetic" in the sense that its supplementation mimics the beneficial effects of nutrient deprivation on organismal health but that it is also an obligatory downstream effector of the antiaging effects of fasting and rapamycin.Abbreviation: EIF5A: eukaryotic translation initiation factor 5A; IGF1: insulin like growth factor 1; MTOR: mechanistic target of rapamycin kinase; ODC1: ornithine decarboxylase 1; TFEB: transcription factor EB.

3.
Nat Cell Biol ; 26(9): 1571-1584, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39117797

RESUMEN

Caloric restriction and intermittent fasting prolong the lifespan and healthspan of model organisms and improve human health. The natural polyamine spermidine has been similarly linked to autophagy enhancement, geroprotection and reduced incidence of cardiovascular and neurodegenerative diseases across species borders. Here, we asked whether the cellular and physiological consequences of caloric restriction and fasting depend on polyamine metabolism. We report that spermidine levels increased upon distinct regimens of fasting or caloric restriction in yeast, flies, mice and human volunteers. Genetic or pharmacological blockade of endogenous spermidine synthesis reduced fasting-induced autophagy in yeast, nematodes and human cells. Furthermore, perturbing the polyamine pathway in vivo abrogated the lifespan- and healthspan-extending effects, as well as the cardioprotective and anti-arthritic consequences of fasting. Mechanistically, spermidine mediated these effects via autophagy induction and hypusination of the translation regulator eIF5A. In summary, the polyamine-hypusination axis emerges as a phylogenetically conserved metabolic control hub for fasting-mediated autophagy enhancement and longevity.


Asunto(s)
Autofagia , Caenorhabditis elegans , Restricción Calórica , Ayuno , Longevidad , Espermidina , Autofagia/efectos de los fármacos , Longevidad/efectos de los fármacos , Espermidina/metabolismo , Espermidina/farmacología , Animales , Humanos , Caenorhabditis elegans/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Factor 5A Eucariótico de Iniciación de Traducción , Drosophila melanogaster/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ratones , Masculino , Ratones Endogámicos C57BL
4.
Can J Cardiol ; 40(8): 1445-1457, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38354947

RESUMEN

Population aging and the associated increase in cardiovascular disease rates pose serious threats to global public health. Different forms of fasting have become an increasingly attractive strategy to directly address aging and potentially limit or delay the onset of cardiovascular diseases. A growing number of experimental studies and clinical trials indicate that the amount and timing of food intake as well as the daily time window during which food is consumed, are crucial determinants of cardiovascular health. Indeed, intermittent fasting counteracts the molecular hallmarks of cardiovascular aging and promotes different aspects of cardiometabolic health, including blood pressure and glycemic control, as well as body weight reduction. In this report, we summarize current evidence from randomized clinical trials of intermittent fasting on body weight and composition as well as cardiovascular and metabolic risk factors. Moreover, we critically discuss the preventive and therapeutic potential of intermittent fasting, but also possible detrimental effects in the context of cardiovascular aging and related disease. We delve into the physiological mechanisms through which intermittent fasting might improve cardiovascular health, and raise important factors to consider in the design of clinical trials on the efficacy of intermittent fasting to reduce major adverse cardiovascular events among aged individuals at high risk of cardiovascular disease. We conclude that despite growing evidence and interest among the lay and scientific communities in the cardiovascular health-improving effects of intermittent fasting, further research efforts and appropriate caution are warranted before broadly implementing intermittent fasting regimens, especially in elderly persons.


Asunto(s)
Envejecimiento , Enfermedades Cardiovasculares , Ayuno Intermitente , Humanos , Envejecimiento/fisiología , Enfermedades Cardiovasculares/prevención & control , Sistema Cardiovascular/fisiopatología , Ayuno Intermitente/efectos adversos , Ayuno Intermitente/fisiología , Medición de Riesgo/métodos , Factores de Riesgo
5.
Eur J Clin Invest ; 54(4): e14138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38041247

RESUMEN

Mitochondrial dysfunction is a major hallmark of ageing and related chronic disorders. Controlled removal of damaged mitochondria by the autophagic machinery, a process known as mitophagy, is vital for mitochondrial homeostasis and cell survival. The central role of mitochondria in cellular metabolism places mitochondrial removal at the interface of key metabolic pathways affecting the biosynthesis or catabolism of acetyl-coenzyme A, nicotinamide adenine dinucleotide, polyamines, as well as fatty acids and amino acids. Molecular switches that integrate the metabolic status of the cell, like AMP-dependent protein kinase, protein kinase A, mechanistic target of rapamycin and sirtuins, have also emerged as important regulators of mitophagy. In this review, we discuss how metabolic regulation intersects with mitophagy. We place special emphasis on the metabolic regulatory circuits that may be therapeutically targeted to delay ageing and mitochondria-associated chronic diseases. Moreover, we identify outstanding knowledge gaps, such as the ill-defined distinction between basal and damage-induced mitophagy, which must be resolved to boost progress in this area.


Asunto(s)
Mitocondrias , Mitofagia , Humanos , Mitofagia/fisiología , Mitocondrias/fisiología , Autofagia , Homeostasis
6.
Mol Metab ; 79: 101869, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38160938

RESUMEN

OBJECTIVE: Lysosomal acid lipase (LAL) is the only enzyme known to hydrolyze cholesteryl esters (CE) and triacylglycerols in lysosomes at an acidic pH. Despite the importance of lysosomal hydrolysis in skeletal muscle (SM), research in this area is limited. We hypothesized that LAL may play an important role in SM development, function, and metabolism as a result of lipid and/or carbohydrate metabolism disruptions. RESULTS: Mice with systemic LAL deficiency (Lal-/-) had markedly lower SM mass, cross-sectional area, and Feret diameter despite unchanged proteolysis or protein synthesis markers in all SM examined. In addition, Lal-/- SM showed increased total cholesterol and CE concentrations, especially during fasting and maturation. Regardless of increased glucose uptake, expression of the slow oxidative fiber marker MYH7 was markedly increased in Lal-/-SM, indicating a fiber switch from glycolytic, fast-twitch fibers to oxidative, slow-twitch fibers. Proteomic analysis of the oxidative and glycolytic parts of the SM confirmed the transition between fast- and slow-twitch fibers, consistent with the decreased Lal-/- muscle size due to the "fiber paradox". Decreased oxidative capacity and ATP concentration were associated with reduced mitochondrial function of Lal-/- SM, particularly affecting oxidative phosphorylation, despite unchanged structure and number of mitochondria. Impairment in muscle function was reflected by increased exhaustion in the treadmill peak effort test in vivo. CONCLUSION: We conclude that whole-body loss of LAL is associated with a profound remodeling of the muscular phenotype, manifested by fiber type switch and a decline in muscle mass, most likely due to dysfunctional mitochondria and impaired energy metabolism, at least in mice.


Asunto(s)
Enfermedades Mitocondriales , Enfermedad de Wolman , Animales , Ratones , Músculo Esquelético/metabolismo , Proteómica , Esterol Esterasa/metabolismo , Enfermedad de Wolman/genética
7.
Nat Rev Cardiol ; 20(11): 754-777, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37193857

RESUMEN

Normal circulatory function is a key determinant of disease-free life expectancy (healthspan). Indeed, pathologies affecting the cardiovascular system, which are growing in prevalence, are the leading cause of global morbidity, disability and mortality, whereas the maintenance of cardiovascular health is necessary to promote both organismal healthspan and lifespan. Therefore, cardiovascular ageing might precede or even underlie body-wide, age-related health deterioration. In this Review, we posit that eight molecular hallmarks are common denominators in cardiovascular ageing, namely disabled macroautophagy, loss of proteostasis, genomic instability (in particular, clonal haematopoiesis of indeterminate potential), epigenetic alterations, mitochondrial dysfunction, cell senescence, dysregulated neurohormonal signalling and inflammation. We also propose a hierarchical order that distinguishes primary (upstream) from antagonistic and integrative (downstream) hallmarks of cardiovascular ageing. Finally, we discuss how targeting each of the eight hallmarks might be therapeutically exploited to attenuate residual cardiovascular risk in older individuals.

9.
J Anat ; 242(1): 91-101, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34958481

RESUMEN

Aging is associated with cardiac hypertrophy and progressive decline in heart function. One of the hallmarks of cellular aging is the dysfunction of mitochondria. These organelles occupy around 1/4 to 1/3 of the cardiomyocyte volume. During cardiac aging, the removal of defective or dysfunctional mitochondria by mitophagy as well as the dynamic equilibrium between mitochondrial fusion and fission is distorted. Here, we hypothesized that these changes affect the number of mitochondria and alter their three-dimensional (3D) characteristics in aged mouse hearts. The polyamine spermidine stimulates both mitophagy and mitochondrial biogenesis, and these are associated with improved cardiac function and prolonged lifespan. Therefore, we speculated that oral spermidine administration normalizes the number of mitochondria and their 3D morphology in aged myocardium. Young (4-months old) and old (24-months old) mice, treated or not treated with spermidine, were used in this study (n = 10 each). The number of mitochondria in the left ventricles was estimated by design-based stereology using the Euler-Poincaré characteristic based on a disector at the transmission electron microscopic level. The 3D morphology of mitochondria was investigated by 3D reconstruction (using manual contour drawing) from electron microscopic z-stacks obtained by focused ion beam scanning electron microscopy. The volume of the left ventricle and cardiomyocytes were significantly increased in aged mice with or without spermidine treatment. Although the number of mitochondria was similar in young and old control mice, it was significantly increased in aged mice treated with spermidine. The interfibrillar mitochondria from old mice exhibited a lower degree of organization and a greater variation in shape and size compared to young animals. The mitochondrial alignment along the myofibrils in the spermidine-treated mice appeared more regular than in control aged mice, however, old mitochondria from animals fed spermidine also showed a greater diversity of shape and size than young mitochondria. In conclusion, mitochondria of the aged mouse left ventricle exhibited changes in number and 3D ultrastructure that is likely the structural correlate of dysfunctional mitochondrial dynamics. Spermidine treatment reduced, at least in part, these morphological changes, indicating a beneficial effect on cardiac mitochondrial alterations associated with aging.


Asunto(s)
Miocardio , Espermidina , Ratones , Animales , Espermidina/farmacología , Espermidina/metabolismo , Miocitos Cardíacos/metabolismo , Mitocondrias , Suplementos Dietéticos
11.
Cell Stress ; 6(8): 72-75, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36447531

RESUMEN

Phosphoinositide 3-kinase (PI3K) is a key component of the insulin signaling pathway that controls cellular me-tabolism and growth. Loss-of-function mutations in PI3K signaling and other downstream effectors of the insulin signaling pathway extend the lifespan of various model organisms. However, the pro-longevity effect appears to be sex-specific and young mice with reduced PI3K signaling have increased risk of cardiac disease. Hence, it remains elusive as to whether PI3K inhibition is a valid strategy to delay aging and extend healthspan in humans. We recently demonstrated that reduced PI3K activity in cardiomyocytes delays cardiac growth, causing subnormal contractility and cardiopulmonary functional capacity, as well as increased risk of mortality at young age. In stark contrast, in aged mice, experi-mental attenuation of PI3K signaling reduced the age-dependent decline in cardiac function and extended maximal lifespan, suggesting a biphasic effect of PI3K on cardiac health and survival. The cardiac anti-aging effects of reduced PI3K activity coincided with enhanced oxida-tive phosphorylation and required increased autophagic flux. In humans, explanted failing hearts showed in-creased PI3K signaling, as indicated by increased phos-phorylation of the serine/threonine-protein kinase AKT. Hence, late-life cardiac-specific targeting of PI3K might have a therapeutic potential in cardiac aging and related diseases.

12.
Life Sci ; 309: 120998, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36179815

RESUMEN

AIMS: Despite the high prevalence of heart failure with preserved ejection fraction (HFpEF), the pathomechanisms remain elusive and specific therapy is lacking. Disease-causing factors include metabolic risk, notably obesity. However, proteomic changes in HFpEF are poorly understood, hampering therapeutic strategies. We sought to elucidate how metabolic syndrome affects cardiac protein expression, phosphorylation and acetylation in the Zucker diabetic fatty/Spontaneously hypertensive heart failure F1 (ZSF1) rat HFpEF model, and to evaluate changes regarding their potential for treatment. MAIN METHODS: ZSF1 obese and lean rats were fed a Purina diet up to the onset of HFpEF in the obese animals. We quantified the proteome, phosphoproteome and acetylome of ZSF1 obese versus lean heart tissues by mass spectrometry and singled out targets for site-specific evaluation. KEY FINDINGS: The acetylome of ZSF1 obese versus lean hearts was more severely altered (21 % of proteins changed) than the phosphoproteome (9 %) or proteome (3 %). Proteomic alterations, confirmed by immunoblotting, indicated low-grade systemic inflammation and endothelial remodeling in obese hearts, but low nitric oxide-dependent oxidative/nitrosative stress. Altered acetylation in ZSF1 obese hearts mainly affected pathways important for metabolism, energy production and mechanical function, including hypo-acetylation of mechanical proteins but hyper-acetylation of proteins regulating fatty acid metabolism. Hypo-acetylation and hypo-phosphorylation of elastic titin in ZSF1 obese hearts could explain myocardial stiffening. SIGNIFICANCE: Cardiometabolic syndrome alters posttranslational modifications, notably acetylation, in experimental HFpEF. Pathway changes implicate a HFpEF signature of low-grade inflammation, endothelial dysfunction, metabolic and mechanical impairment, and suggest titin stiffness and mitochondrial metabolism as promising therapeutic targets.


Asunto(s)
Insuficiencia Cardíaca , Síndrome Metabólico , Ratas , Animales , Volumen Sistólico/fisiología , Conectina/metabolismo , Función Ventricular Izquierda/fisiología , Fosforilación , Ratas Zucker , Proteoma/metabolismo , Acetilación , Proteómica , Óxido Nítrico/metabolismo , Síndrome Metabólico/metabolismo , Obesidad/metabolismo , Inflamación/metabolismo , Procesamiento Proteico-Postraduccional , Ácidos Grasos
13.
Autophagy ; 18(10): 2500-2502, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35786404

RESUMEN

Although attenuated IGF1R (insulin-like growth factor 1 receptor) signaling has long been viewed to promote longevity in model organisms, adverse effects on the heart have been the subject of major concern. We observed that IGF1R is overexpressed in cardiac tissues from patients with end-stage non-ischemic heart failure, coupled to the activation of the IGF1R downstream effector AKT/protein kinase B and inhibition of ULK1 (unc-51 like autophagy activating kinase 1). Transgenic overexpression of human IGF1R in cardiomyocytes from mice initially induces physiological cardiac hypertrophy and superior function, but later in life confers a negative impact on cardiac health, causing macroautophagy/autophagy inhibition as well as impaired oxidative phosphorylation, thus reducing life expectancy. Treatment with the autophagy inducer and caloric restriction mimetic spermidine ameliorates most of these IGF1R-induced cardiotoxic effects in vivo. Moreover, inhibition of IGF1R signaling by means of a dominant-negative phosphoinositide 3-kinase (PI3K) mutant induces cardioprotective autophagy, restores myocardial bioenergetics and improves late-life survival. Hence, our results demonstrate that IGF1R exerts a dual biphasic impact on cardiac health, and that autophagy mediates the late-life geroprotective effects of IGF1R inhibition in the heart.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Receptor de Insulina , Envejecimiento , Animales , Antígenos CD , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1 , Receptor de Insulina/metabolismo , Espermidina/farmacología
14.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805966

RESUMEN

Many cardiac insults causing atrial remodeling are linked to either stretch or tachycardia, but a comparative characterization of their effects on early remodeling events in human myocardium is lacking. Here, we applied isometric stretch or sustained tachycardia at 2.5 Hz in human atrial trabeculae for 6 h followed by microarray gene expression profiling. Among largely independent expression patterns, we found a small common fraction with the microRNA miR-1183 as the highest up-regulated transcript (up to 4-fold). Both, acute stretch and tachycardia induced down-regulation of the predicted miR-1183 target genes ADAM20 and PLA2G7. Furthermore, miR-1183 was also significantly up-regulated in chronically remodeled atrial samples from patients with persistent atrial fibrillation (3-fold up-regulation versus sinus rhythm samples), and in ventricular myocardium from dilative cardiomyopathy hearts (2-fold up-regulation) as compared to non-failing controls. In sum, although stretch and tachycardia show distinct transcriptomic signatures in human atrial myocardium, both cardiac insults consistently regulate the expression of miR-1183 and its downstream targets in acute and chronic remodeling. Thus, elevated expression of miR-1183 might serve as a tissue biomarker for atrial remodeling and might be of potential functional significance in cardiac disease.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , MicroARNs , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Biomarcadores/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Miocardio/metabolismo , Taquicardia/genética , Taquicardia/metabolismo
15.
J Lipid Atheroscler ; 11(2): 111-132, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35656147

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) is an essential and pleiotropic coenzyme involved not only in cellular energy metabolism, but also in cell signaling, epigenetic regulation, and post-translational protein modifications. Vascular disease risk factors are associated with aberrant NAD+ metabolism. Conversely, the therapeutic increase of NAD+ levels through the administration of NAD+ precursors or inhibitors of NAD+-consuming enzymes reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances oxidative metabolism in vascular cells of humans and rodents with vascular pathologies. As such, NAD+ has emerged as a potential target for combatting age-related cardiovascular and cerebrovascular disorders. This review discusses NAD+-regulated mechanisms critical for vascular health and summarizes new advances in NAD+ research directly related to vascular aging and disease, including hypertension, atherosclerosis, coronary artery disease, and aortic aneurysms. Finally, we enumerate challenges and opportunities for NAD+ repletion therapy while anticipating the future of this exciting research field, which will have a major impact on vascular medicine.

16.
J Lipid Atheroscler ; 11(2): 161-177, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35656151

RESUMEN

Objective: Impaired cardiac efficiency is a hallmark of diabetic cardiomyopathy in models of type 2 diabetes. Adiponectin receptor 1 (AdipoR1) deficiency impairs cardiac efficiency in non-diabetic mice, suggesting that hypoadiponectinemia in type 2 diabetes may contribute to impaired cardiac efficiency due to compromised AdipoR1 signaling. Thus, we investigated whether targeting cardiac adiponectin receptors may improve cardiac function and energetics, and attenuate diabetic cardiomyopathy in type 2 diabetic mice. Methods: A non-selective adiponectin receptor agonist, AdipoRon, and vehicle were injected intraperitoneally into Eight-week-old db/db or C57BLKS/J mice for 10 days. Cardiac morphology and function were evaluated by echocardiography and working heart perfusions. Results: Based on echocardiography, AdipoRon treatment did not alter ejection fraction, left ventricular diameters or left ventricular wall thickness in db/db mice compared to vehicle-treated mice. In isolated working hearts, an impairment in cardiac output and efficiency in db/db mice was not improved by AdipoRon. Mitochondrial respiratory capacity, respiration in the presence of oligomycin, and 4-hydroxynonenal levels were similar among all groups. However, AdipoRon induced a marked shift in the substrate oxidation pattern in db/db mice towards increased reliance on glucose utilization. In parallel, the diabetes-associated increase in serum triglyceride levels in vehicle-treated db/db mice was blunted by AdipoRon treatment, while an increase in myocardial triglycerides in vehicle-treated db/db mice was not altered by AdipoRon treatment. Conclusion: AdipoRon treatment shifts myocardial substrate preference towards increased glucose utilization, likely by decreasing fatty acid delivery to the heart, but was not sufficient to improve cardiac output and efficiency in db/db mice.

17.
Circulation ; 145(25): 1853-1866, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35616058

RESUMEN

BACKGROUND: The insulin-like growth factor 1 (IGF1) pathway is a key regulator of cellular metabolism and aging. Although its inhibition promotes longevity across species, the effect of attenuated IGF1 signaling on cardiac aging remains controversial. METHODS: We performed a lifelong study to assess cardiac health and lifespan in 2 cardiomyocyte-specific transgenic mouse models with enhanced versus reduced IGF1 receptor (IGF1R) signaling. Male mice with human IGF1R overexpression or dominant negative phosphoinositide 3-kinase mutation were examined at different life stages by echocardiography, invasive hemodynamics, and treadmill coupled to indirect calorimetry. In vitro assays included cardiac histology, mitochondrial respiration, ATP synthesis, autophagic flux, and targeted metabolome profiling, and immunoblots of key IGF1R downstream targets in mouse and human explanted failing and nonfailing hearts, as well. RESULTS: Young mice with increased IGF1R signaling exhibited superior cardiac function that progressively declined with aging in an accelerated fashion compared with wild-type animals, resulting in heart failure and a reduced lifespan. In contrast, mice with low cardiac IGF1R signaling exhibited inferior cardiac function early in life, but superior cardiac performance during aging, and increased maximum lifespan, as well. Mechanistically, the late-life detrimental effects of IGF1R activation correlated with suppressed autophagic flux and impaired oxidative phosphorylation in the heart. Low IGF1R activity consistently improved myocardial bioenergetics and function of the aging heart in an autophagy-dependent manner. In humans, failing hearts, but not those with compensated hypertrophy, displayed exaggerated IGF1R expression and signaling activity. CONCLUSIONS: Our findings indicate that the relationship between IGF1R signaling and cardiac health is not linear, but rather biphasic. Hence, pharmacological inhibitors of the IGF1 pathway, albeit unsuitable for young individuals, might be worth considering in older adults.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Longevidad , Anciano , Animales , Promoción de la Salud , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo
19.
Redox Biol ; 52: 102306, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35367810

RESUMEN

Titin, as the main protein responsible for the passive stiffness of the sarcomere, plays a key role in diastolic function and is a determinant factor in the etiology of heart disease. Titin stiffness depends on unfolding and folding transitions of immunoglobulin-like (Ig) domains of the I-band, and recent studies have shown that oxidative modifications of cryptic cysteines belonging to these Ig domains modulate their mechanical properties in vitro. However, the relevance of this mode of titin mechanical modulation in vivo remains largely unknown. Here, we describe the high evolutionary conservation of titin mechanical cysteines and show that they are remarkably oxidized in murine cardiac tissue. Mass spectrometry analyses indicate a similar landscape of basal oxidation in murine and human myocardium. Monte Carlo simulations illustrate how disulfides and S-thiolations on these cysteines increase the dynamics of the protein at physiological forces, while enabling load- and isoform-dependent regulation of titin stiffness. Our results demonstrate the role of conserved cysteines in the modulation of titin mechanical properties in vivo and point to potential redox-based pathomechanisms in heart disease.


Asunto(s)
Cardiopatías , Sarcómeros , Animales , Conectina/química , Cisteína/metabolismo , Elasticidad , Cardiopatías/metabolismo , Humanos , Ratones , Miocardio/metabolismo , Oxidación-Reducción , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Sarcómeros/metabolismo
20.
Circ Res ; 130(7): 994-1010, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35193397

RESUMEN

RATIONALE: Atrial fibrillation (AF) and heart failure often coexist, but their interaction is poorly understood. Clinical data indicate that the arrhythmic component of AF may contribute to left ventricular (LV) dysfunction. OBJECTIVE: This study investigates the effects and molecular mechanisms of AF on the human LV. METHODS AND RESULTS: Ventricular myocardium from patients with aortic stenosis and preserved LV function with sinus rhythm or rate-controlled AF was studied. LV myocardium from patients with sinus rhythm and patients with AF showed no differences in fibrosis. In functional studies, systolic Ca2+ transient amplitude of LV cardiomyocytes was reduced in patients with AF, while diastolic Ca2+ levels and Ca2+ transient kinetics were not statistically different. These results were confirmed in LV cardiomyocytes from nonfailing donors with sinus rhythm or AF. Moreover, normofrequent AF was simulated in vitro using arrhythmic or rhythmic pacing (both at 60 bpm). After 24 hours of AF-simulation, human LV cardiomyocytes from nonfailing donors showed an impaired Ca2+ transient amplitude. For a standardized investigation of AF-simulation, human iPSC-cardiomyocytes were tested. Seven days of AF-simulation caused reduced systolic Ca2+ transient amplitude and sarcoplasmic reticulum Ca2+ load likely because of an increased diastolic sarcoplasmic reticulum Ca2+ leak. Moreover, cytosolic Na+ concentration was elevated and action potential duration was prolonged after AF-simulation. We detected an increased late Na+ current as a potential trigger for the detrimentally altered Ca2+/Na+-interplay. Mechanistically, reactive oxygen species were higher in the LV of patients with AF. CaMKII (Ca2+/calmodulin-dependent protein kinase IIδc) was found to be more oxidized at Met281/282 in the LV of patients with AF leading to an increased CaMKII activity and consequent increased RyR2 phosphorylation. CaMKII inhibition and ROS scavenging ameliorated impaired systolic Ca2+ handling after AF-simulation. CONCLUSIONS: AF causes distinct functional and molecular remodeling of the human LV. This translational study provides the first mechanistic characterization and the potential negative impact of AF in the absence of tachycardia on the human ventricle.


Asunto(s)
Fibrilación Atrial , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA