Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 11: 766944, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950607

RESUMEN

Periodontal disease is classically characterized by progressive destruction of the soft and hard tissues of the periodontal complex, mediated by an interplay between dysbiotic microbial communities and aberrant immune responses within gingival and periodontal tissues. Putative periodontal pathogens are enriched as the resident oral microbiota becomes dysbiotic and inflammatory responses evoke tissue destruction, thus inducing an unremitting positive feedback loop of proteolysis, inflammation, and enrichment for periodontal pathogens. Keystone microbial pathogens and sustained gingival inflammation are critical to periodontal disease progression. However, recent studies have revealed the importance of previously unidentified microbes involved in disease progression, including various viruses, phages and bacterial species. Moreover, newly identified immunological and genetic mechanisms, as well as environmental host factors, including diet and lifestyle, have been discerned in recent years as further contributory factors in periodontitis. These factors have collectively expanded the established narrative of periodontal disease progression. In line with this, new ideologies related to maintaining periodontal health and treating existing disease have been explored, such as the application of oral probiotics, to limit and attenuate disease progression. The role of systemic host pathologies, such as autoimmune disorders and diabetes, in periodontal disease pathogenesis has been well noted. Recent studies have additionally identified the reciprocated importance of periodontal disease in potentiating systemic disease states at distal sites, such as in Alzheimer's disease, inflammatory bowel diseases, and oral cancer, further highlighting the importance of the oral cavity in systemic health. Here we review long-standing knowledge of periodontal disease progression while integrating novel research concepts that have broadened our understanding of periodontal health and disease. Further, we delve into innovative hypotheses that may evolve to address significant gaps in the foundational knowledge of periodontal disease.


Asunto(s)
Microbiota , Enfermedades Periodontales , Periodontitis , Disbiosis , Humanos , Periodoncio
2.
Periodontol 2000 ; 87(1): 107-131, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34463991

RESUMEN

States of oral health and disease reflect the compositional and functional capacities of, as well as the interspecies interactions within, the oral microbiota. The oral cavity exists as a highly dynamic microbial environment that harbors many distinct substrata and microenvironments that house diverse microbial communities. Specific to the oral cavity, the nonshedding dental surfaces facilitate the development of highly complex polymicrobial biofilm communities, characterized not only by the distinct microbes comprising them, but cumulatively by their activities. Adding to this complexity, the oral cavity faces near-constant environmental challenges, including those from host diet, salivary flow, masticatory forces, and introduction of exogenous microbes. The composition of the oral microbiome is shaped throughout life by factors including host genetics, maternal transmission, as well as environmental factors, such as dietary habits, oral hygiene practice, medications, and systemic factors. This dynamic ecosystem presents opportunities for oral microbial dysbiosis and the development of dental and periodontal diseases. The application of both in vitro and culture-independent approaches has broadened the mechanistic understandings of complex polymicrobial communities within the oral cavity, as well as the environmental, local, and systemic underpinnings that influence the dynamics of the oral microbiome. Here, we review the present knowledge and current understanding of microbial communities within the oral cavity and the influences and challenges upon this system that encourage homeostasis or provoke microbiome perturbation, and thus contribute to states of oral health or disease.


Asunto(s)
Microbiota , Enfermedades Periodontales , Disbiosis , Humanos , Boca , Salud Bucal
3.
Methods Mol Biol ; 2327: 271-280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34410651

RESUMEN

The oral cavity houses a diverse consortium of microorganisms corresponding to specific microbial niches within the oral cavity. The complicated nature of sample collection limits the accuracy, reproducibility, and completeness of sample collection of the dentogingival microbiome. Moreover, large variability among human oral samples introduces inexorable confounds. Here, we introduce a method to study the dentogingival microbiome using a murine model that allows for greater control over experimental variability and permits collection of the dentogingival microbiome in an intact state and in its entirety.As an example of this approach, this chapter provides a workflow to explore the effect of dietary fiber consumption on the murine dentogingival microbiome . Mice are fed diets corresponding to Fiber, Sugar, Fiber + Sugar, and Control groups for 7 weeks. A whole-mandible extraction technique is described to isolate the mandibular dentogingival surfaces. 16S rRNA gene analysis is coupled with removal of unwanted host DNA amplification products to allow an investigation of the dental microbiome in the presence of increased fiber in terms of microbial taxonomic abundance and diversity.


Asunto(s)
Bacterias , Microbiota , Animales , Bacterias/genética , ADN Ribosómico , Fibras de la Dieta , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Boca , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Azúcares
4.
Periodontol 2000 ; 82(1): 115-128, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31850641

RESUMEN

Periodontal studies using transcriptomics, proteomics, and metabolomics encompass the collection of mRNA transcripts, proteins, and small-molecule chemicals in the context of periodontal health and disease. The number of studies using these approaches has significantly increased in the last decade and they have provided new insight into the pathogenesis and host-microbe interactions that define periodontal diseases. This review provides an overview of current molecular findings using -omic approaches that underlie periodontal disease, including modulation of the host immune response, tissue homeostasis, and complex metabolic processes of the host and the oral microbiome. Integration of these -omic approaches will broaden our perspective of the molecular mechanisms involved in periodontal disease, advancing and improving the diagnosis and treatment of various stages and forms of periodontal disease.


Asunto(s)
Metaboloma , Transcriptoma , Humanos , Metabolómica , Proteoma , Proteómica
5.
Dent J (Basel) ; 7(2)2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31159370

RESUMEN

The oral cavity houses a diverse consortium of microorganisms, heavily influenced by host diet, that can mediate dental health and disease. While the impact of dietary carbohydrates to the dental microbiome has been well-documented, the effect of fiber as a mechanical influence on the dental microbiome is unexplored. We performed 16S rRNA gene analysis to investigate the response of the dental microbiome to the presence of increased fiber in terms of microbial taxonomic abundance and diversity. Dental microbial community structure was significantly different in mice fed a diet supplemented with increased fiber and/or sugar. Fiber significantly affected measures of beta diversity at the phylum and genus levels, and a strong interactive effect on alpha diversity was observed between sugar and fiber at the phylum level. The addition of fiber also induced significant variation in relative taxonomic abundance. This study demonstrates that fiber can promote significant variations in the mouse dental microbiome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA