Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 14(1): e0211046, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30682194

RESUMEN

BACKGROUND: Vascular endothelial growth factor (VEGF) is commonly overexpressed in a variety of tumor types including lung cancer. As a key regulator of angiogenesis, it promotes tumor survival, growth, and metastasis through the activation of the downstream protein kinase B (AKT) and extracellular signal-regulated kinase (ERK 1/2) activation. The VEGF promoter contains a 36 bp guanine-rich sequence (VEGFq) which is capable of forming quadruplex (four-stranded) DNA. This sequence has been implicated in the down-regulation of both basal and inducible VEGF expression and represents an ideal target for inhibition of VEGF expression. RESULTS: Our experiments demonstrate sequence-specific interaction between a G-rich quadruplex-forming oligonucleotide encoding a portion of the VEGFq sequence and its double stranded target sequence, suggesting that this G-rich oligonucleotide binds specifically to its complementary C-rich sequence in the genomic VEGF promoter by strand invasion. We show that treatment of A549 non-small lung cancer cells (NSCLC) with this oligonucleotide results in decreased VEGF expression and growth inhibition. The VEGFq oligonucleotide inhibits proliferation and invasion by decreasing VEGF mRNA/protein expression and subsequent ERK 1/2 and AKT activation. Furthermore, the VEGFq oligonucleotide is abundantly taken into cells, localized in the cytoplasm/nucleus, inherently stable in serum and intracellularly, and has no effect on non-transformed cells. Suppression of VEGF expression induces cytoplasmic accumulation of autophagic vacuoles and increased expression of LC3B, suggesting that VEGFq may induce autophagic cell death. CONCLUSION: Our data strongly suggest that the G-rich VEGFq oligonucleotide binds specifically to the C-rich strand of the genomic VEGF promoter, via strand invasion, stabilizing the quadruplex structure formed by the genomic G-rich sequence, resulting in transcriptional inhibition. Strand invading oligonucleotides represent a new approach to specifically inhibit VEGF expression that avoids many of the problems which have plagued the therapeutic use of oligonucleotides. This is a novel approach to specific inhibition of gene expression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , G-Cuádruplex , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas de Neoplasias/biosíntesis , Oligonucleótidos/farmacología , Regiones Promotoras Genéticas , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Sistemas de Liberación de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Proteínas de Neoplasias/genética , Oligonucleótidos/genética , Factor A de Crecimiento Endotelial Vascular/genética
2.
J Biol Chem ; 289(12): 8521-31, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24464582

RESUMEN

Quadruplex-forming DNA sequences are present throughout the eukaryotic genome, including in telomeric DNA. We have shown that the c-Myc promoter quadruplex-forming sequence Pu-27 selectively kills transformed cells (Sedoris, K. C., Thomas, S. D., Clarkson, C. R., Muench, D., Islam, A., Singh, R., and Miller, D. M. (2012) Genomic c-Myc quadruplex DNA selectively kills leukemia. Mol. Cancer Ther. 11, 66-76). In this study, we show that Pu-27 induces profound DNA damage, resulting in striking chromosomal abnormalities in the form of chromatid or chromosomal breaks, radial formation, and telomeric DNA loss, which induces γ-H2AX in U937 cells. Pu-27 down-regulates telomeric shelterin proteins, DNA damage response mediators (RAD17 and RAD50), double-stranded break repair molecule 53BP1, G2 checkpoint regulators (CHK1 and CHK2), and anti-apoptosis gene survivin. Interestingly, there are no changes of DNA repair molecules H2AX, BRCA1, and the telomere maintenance gene, hTERT. ΔB-U937, where U937 cells stably transfected with deleted basic domain of TRF2 is partially sensitive to Pu-27 but exhibits no changes in expression of shelterin proteins. However, there is an up-regulation of CHK1, CHK2, H2AX, BRCA1, and survivin. Telomere dysfunction-induced foci assay revealed co-association of TRF1with γ-H2AX in ATM deficient cells, which are differentially sensitive to Pu-27 than ATM proficient cells. Alt (alternating lengthening of telomere) cells are relatively resistant to Pu-27, but there are no significant changes of telomerase activity in both Alt and non-Alt cells. Lastly, we show that this Pu-27-mediated sensitivity is p53-independent. The data therefore support two conclusions. First, Pu-27 induces DNA damage within both telomeric and nontelomeric regions of the genome. Second, Pu-27-mediated telomeric damage is due, at least in part, to compromise of the telomeric shelterin protein complex.


Asunto(s)
Daño del ADN , ADN/genética , G-Cuádruplex , Genes myc , Neoplasias/genética , Telómero/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Secuencia de Bases , Muerte Celular , Línea Celular Tumoral , ADN/química , ADN/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Fosforilación , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Complejo Shelterina , Telómero/química , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
Exp Mol Pathol ; 94(1): 84-90, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23000426

RESUMEN

The primo vascular system (PVS), which is composed of very small primo-vessels (PV) and primo-nodes (PN), has recently emerged as a third component of circulatory system. Here, we report the presence of a tumor derived PVS in murine xenografts of human histiocytic lymphoma (U937) in close proximity to the tumor. Within this system, PNs are small (~500-600 µM diameter) membranous sac-like structures which contain numerous small cells which can be demonstrated by DAPI staining. Hematoxylin and Eosin (H&E) staining of the peri-tumoral PVS shows the presence of loose structures lined by fibroblasts but filled with dense fibers, cells, lacunae and nerve-like structures. The origin and type of cells within the PVS was characterized by immunostaining with antibodies for CD68, CD45 and lysozyme. The results of these studies reveal that the PVS of the xenograft originates from the human U937 tumor cells. qRT-PCR analysis of mRNA isolated from PVS cells reveals a striking predominance of human, rather than mouse, sequences. Of particular interest, human stem cell specific transcription factors were overexpressed, most notably KLF4, an upstream regulator of NANOG which maintains the pluripotent and undifferentiated state of stem cells. These results suggest that the cells present within the PVS are derived from the human xenograft and suggests that the primo-vessels associated with the xenografted tumor may provide a safe haven for a select population of cancer stem cells. Further understanding of the biological properties of these cells may allow the development of new anti-cancer interventions.


Asunto(s)
Linfoma de Células B Grandes Difuso/patología , Células Madre Neoplásicas , Animales , Antígenos CD/análisis , Antígenos de Diferenciación Mielomonocítica/análisis , Línea Celular Tumoral , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Antígenos Comunes de Leucocito/análisis , Antígenos Comunes de Leucocito/inmunología , Meridianos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Muramidasa/metabolismo , Trasplante de Neoplasias , Células Madre Neoplásicas/metabolismo , ARN Mensajero/análisis , Nicho de Células Madre , Trasplante Heterólogo , Células U937
4.
Clin Cancer Res ; 18(20): 5546-53, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23071356

RESUMEN

The processes of cellular growth regulation and cellular metabolism are closely interrelated. The c-Myc oncogene is a "master regulator" which controls many aspects of both of these processes. The metabolic changes which occur in transformed cells, many of which are driven by c-Myc overexpression, are necessary to support the increased need for nucleic acids, proteins, and lipids necessary for rapid cellular proliferation. At the same time, c-Myc overexpression results in coordinated changes in level of expression of gene families which result in increased cellular proliferation. This interesting duality of c-Myc effects places it in the mainstream of transformational changes and gives it a very important role in regulating the "transformed phenotype." The effects induced by c-Myc can occur either as a "primary oncogene" which is activated by amplification or translocation or as a downstream effect of other activated oncogenes. In either case, it appears that c-Myc plays a central role in sustaining the changes which occur with transformation. Although efforts to use c-Myc as a therapeutic target have been quite frustrating, it appears that this may change in the next few years.


Asunto(s)
Transformación Celular Neoplásica , Glucólisis , Neoplasias , Proteínas Proto-Oncogénicas c-myc , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica , Glutamina/metabolismo , Humanos , Mitocondrias/metabolismo , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
5.
Mol Cancer Ther ; 11(1): 66-76, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22084162

RESUMEN

c-Myc, a key regulator of cell cycle and proliferation, is commonly overexpressed in leukemia and associated with poor prognosis. Conventional antisense oligonucleotides targeting c-myc may attenuate leukemic cell growth, however, are poorly taken into cells, rapidly degraded, and have unwanted effects on normal cells. The c-myc promoter contains a guanine-rich sequence (PU27) capable of forming quadruplex (four-stranded) DNA, which may negatively regulate c-myc transcription. However, its biological significance is unknown. We show that treatment of leukemia with an oligonucleotide encoding the genomic PU27 sequence induces cell-cycle arrest and death by oncotic necrosis due to PU27-mediated suppression of c-myc mRNA/protein expression. Furthermore, PU27 is abundantly taken into cells, localized in the cytoplasm/nucleus, inherently stable in serum and intracellularly, and has no effect on normal cells. Suppression of c-myc expression by PU27 caused significant DNA damage, cell and mitochondrial swelling, and membrane permeability characteristic of oncotic necrosis. Induction of oncosis caused mitochondrial dysfunction, depletion of cellular ATP levels, and enhanced oxidative stress. This novel antileukemic strategy addresses current concerns of oligonucleotide therapeutics including problems with uptake, stability, and unintentional effects on normal cells and is the first report of selective cancer cell killing by a genomic DNA sequence.


Asunto(s)
G-Cuádruplex , Leucemia/metabolismo , Oligonucleótidos Antisentido/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Adenosina Trifosfato/metabolismo , Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Leucemia/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Oligonucleótidos Antisentido/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética
6.
BMC Cancer ; 10: 157, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20412594

RESUMEN

BACKGROUND: Hypoxic microenvironments in tumors contribute to transformation, which may alter metabolism, growth, and therapeutic responsiveness. The alpha-enolase gene encodes both a glycolytic enzyme (alpha-enolase) and a DNA-binding tumor suppressor protein, c-myc binding protein (MBP-1). These divergent alpha-enolase gene products play central roles in glucose metabolism and growth regulation and their differential regulation may be critical for tumor adaptation to hypoxia. We have previously shown that MBP-1 and its binding to the c-myc P2 promoter regulates the metabolic and cellular growth changes that occur in response to altered exogenous glucose concentrations. RESULTS: To examine the regulation of alpha-enolase and MBP-1 by a hypoxic microenvironment in breast cancer, MCF-7 cells were grown in low, physiologic, or high glucose under 1% oxygen. Our results demonstrate that adaptation to hypoxia involves attenuation of MBP-1 translation and loss of MBP-1-mediated regulation of c-myc transcription, evidenced by decreased MBP-1 binding to the c-myc P2 promoter. This allows for a robust increase in c-myc expression, "early c-myc response", which stimulates aerobic glycolysis resulting in tumor acclimation to oxidative stress. Increased alpha-enolase mRNA and preferential translation/post-translational modification may also allow for acclimatization to low oxygen, particularly under low glucose concentrations. CONCLUSIONS: These results demonstrate that malignant cells adapt to hypoxia by modulating alpha-enolase/MBP-1 levels and suggest a mechanism for tumor cell induction of the hyperglycolytic state. This important "feedback" mechanism may help transformed cells to escape the apoptotic cascade, allowing for survival during limited glucose and oxygen availability.


Asunto(s)
Neoplasias de la Mama/genética , Hipoxia de la Célula/genética , Proteínas de Unión al ADN/genética , Fosfopiruvato Hidratasa/genética , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclo Celular/genética , Procesos de Crecimiento Celular/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/biosíntesis , Transportador 2 de Aminoácidos Excitadores/metabolismo , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Humanos , Ácido Láctico/biosíntesis , Fosfopiruvato Hidratasa/biosíntesis , Fosforilación , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Translocación Genética , Regulación hacia Arriba
7.
Arch Physiol Biochem ; 115(1): 34-46, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19267281

RESUMEN

Lung ischemia-reperfusion (IR) injury causes alveolar, epithelial and endothelial cell dysfunction which often results in decreased alveolar perfusion, characteristic of an acute respiratory distress syndrome. Nitric oxide (NO) from endothelium-derived NO synthase (eNOS) helps maintain a low pulmonary vascular resistance. Paradoxically, during acute lung injury, overproduction of NO via inducible NO synthase (iNOS) and oxidative stress lead to reactive oxygen and nitrogen species (ROS and RNS) formation and vascular dysfunction. RNS potentiate vascular and cellular injury by oxidation, by decreasing NO bioavailability, and by regulating NOS isoforms. RNS potentiate their own production by uncoupling NO production through eNOS by oxidation and disruption of Akt-mediated phosphorylation of eNOS. This review focuses on effects of NO which cause vascular dysfunction in the unique environment of the lung and presents a hypothesis for interplay between eNOS and iNOS activation with implications for development of new strategies to treat vascular dysfunction associated with IR.


Asunto(s)
Pulmón , Óxido Nítrico Sintasa de Tipo III/metabolismo , Daño por Reperfusión , Animales , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Isoenzimas/metabolismo , Pulmón/patología , Pulmón/fisiología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Oxidación-Reducción , Ácido Peroxinitroso/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
8.
Biochemistry ; 46(29): 8659-68, 2007 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-17595061

RESUMEN

Alpha-enolase is a bifunctional gene encoding both a glycolytic enzyme and a DNA binding protein, c-myc binding protein (MBP-1). MBP-1 binds the c-myc promoter and downregulates c-myc transcription. Since these alpha-enolase gene products have important functions in glucose metabolism and growth regulation, this gene may play a central role in regulating the abnormal proliferative characteristics of transformed cells. To determine the role of alpha-enolase and MBP-1 in the cellular response to altered exogenous glucose concentration, MCF-7 cells were cultured in low (1 nM), physiological (5 mM), or high (25 mM) levels of glucose. Levels of alpha-enolase, MBP-1, and c-myc expression were compared to levels of cell proliferation and lactate production. At all glucose concentrations, MCF-7 cells demonstrated an initial increase in MBP-1 expression and a parallel decrease in c-myc transcript levels, which were accompanied by decreased proliferation. Cells grown in low glucose maintained the increased MBP-1 expression through 48 h, resulting in persistently lower rates of proliferation. However, physiologic or high glucose levels resulted in decreased MBP-1 expression, which was associated with increased cellular proliferation and lactate production. In these cells, c-myc mRNA returned to control levels as MBP-1 expression decreased. Cells grown in low glucose demonstrated a dramatic increase in c-myc mRNA at 48 h, which was associated with a loss in c-myc P2 promoter binding by MBP-1. This suggests that post-translational modifications of MBP-1 likely alter its DNA binding activity. These results demonstrate an important role for MBP-1 in the altered cell proliferation and energy utilization that occur in response to an altered glucose concentration.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Glucosa/farmacología , Factores de Transcripción/metabolismo , Sitios de Unión , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Supervivencia Celular , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Femenino , Genes myc , Humanos , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
9.
Arch Physiol Biochem ; 113(1): 1-12, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17522980

RESUMEN

Pulmonary ischemia-reperfusion (IR) injury may result from trauma, atherosclerosis, pulmonary embolism, pulmonary thrombosis and surgical procedures such as cardiopulmonary bypass and lung transplantation. IR injury induces oxidative stress characterized by formation of reactive oxygen (ROS) and reactive nitrogen species (RNS). Nitric oxide (NO) overproduction via inducible nitric oxide synthase (iNOS) is an important component in the pathogenesis of IR. Reaction of NO with ROS forms RNS as secondary reactive products, which cause platelet activation and upregulation of adhesion molecules. This mechanism of injury is particularly important during pulmonary IR with increased iNOS activity in the presence of oxidative stress. Platelet-endothelial interactions may play an important role in causing pulmonary arteriolar vasoconstriction and post-ischemic alveolar hypoperfusion. This review discusses the relationship between ROS, RNS, P-selectin, and platelet-arteriolar wall interactions and proposes a hypothesis for their role in microvascular responses during pulmonary IR.


Asunto(s)
Arteriolas/patología , Plaquetas/patología , Comunicación Celular/fisiología , Pulmón/irrigación sanguínea , Pulmón/patología , Estrés Oxidativo/fisiología , Daño por Reperfusión/patología , Animales , Arteriolas/metabolismo , Plaquetas/metabolismo , Humanos , Pulmón/metabolismo , Daño por Reperfusión/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 289(6): H2649-56, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16085680

RESUMEN

Hyperhomocysteinemia decreases vascular reactivity and is associated with cardiovascular morbidity and mortality. However, pathogenic mechanisms that increase oxidative stress by homocysteine (Hcy) are unsubstantiated. The aim of this study was to examine the molecular mechanism by which Hcy triggers oxidative stress and reduces bioavailability of nitric oxide (NO) in cardiac microvascular endothelial cells (MVEC). MVEC were cultured for 0-24 h with 0-100 microM Hcy. Differential expression of protease-activated receptors (PARs), thioredoxin, NADPH oxidase, endothelial NO synthase, inducible NO synthase, neuronal NO synthase, and dimethylarginine-dimethylaminohydrolase (DDAH) were measured by real-time quantitative RT-PCR. Reactive oxygen species were measured by using a fluorescent probe, 2',7'-dichlorofluorescein diacetate. Levels of asymmetric dimethylarginine (ADMA) were measured by ELISA and NO levels by the Griess method in the cultured MVEC. There were no alterations in the basal NO levels with 0-100 microM Hcy and 0-24 h of treatment. However, Hcy significantly induced inducible NO synthase and decreased endothelial NO synthase without altering neuronal NO synthase levels. There was significant accumulation of ADMA, in part because of reduced DDAH expression by Hcy in MVEC. Nitrotyrosine expression was increased significantly by Hcy. The results suggest that Hcy activates PAR-4, which induces production of reactive oxygen species by increasing NADPH oxidase and decreasing thioredoxin expression and reduces NO bioavailability in cultured MVEC by 1) increasing NO2-tyrosine formation and 2) accumulating ADMA by decreasing DDAH expression.


Asunto(s)
Células Endoteliales/metabolismo , Homocisteína/administración & dosificación , Microcirculación/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo/fisiología , Receptores Proteinasa-Activados/metabolismo , Animales , Células Cultivadas , Circulación Coronaria/efectos de los fármacos , Circulación Coronaria/fisiología , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Microcirculación/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo
11.
J Appl Physiol (1985) ; 99(6): 2423-32, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16037396

RESUMEN

Oxidative stress, induced by lung ischemia-reperfusion, leads to platelet and leukocyte activation and may contribute to decreased alveolar perfusion by platelet adhesion to the arteriolar wall. We investigated the hypothesis that ischemia-reperfusion injury increases inducible nitric oxide synthase (iNOS) activity and subsequent generation of reactive nitrogen species with P-selectin-dependent platelet-endothelial interactions and vasoconstriction during lung reperfusion. Subpleural arterioles, labeled platelets, and leukocytes were examined in anesthetized, open-chest rabbits by intravital fluorescence microscopy. Ischemia was caused by reversible occlusion of the right pulmonary artery for 1 or 2 h (1IR and 2IR groups). During 2 h of reperfusion, postischemic platelet rolling and adhesion were independent from leukocyte-arteriolar wall interactions and correlated with pulmonary arteriolar constriction in proportion to the length of ischemia. In rabbits treated with an iNOS inhibitor (1400W) before occlusion (2IR + 1400W group), platelet-arteriolar wall interactions and vasoconstriction were prevented. iNOS expression and activity in ischemic lung tissue were markedly greater than control and also were proportional to ischemia duration. NOS activity, immunochemically detected P-selectin, and nitrotyrosine expression in ischemic lung tissue from animals subjected to ischemia-reperfusion, as well as the plasma level of soluble P-selectin, were significantly higher than in nonischemic lungs and were inhibited by pretreatment with 1400W. These results show that platelet adhesion and arteriolar constriction during early reperfusion in the ventilated lung can result from increased iNOS activity and is highly correlated with reactive nitrogen species and P-selectin expression.


Asunto(s)
Arteriolas/fisiopatología , Pulmón/irrigación sanguínea , Pulmón/fisiopatología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Adhesividad Plaquetaria , Circulación Pulmonar , Daño por Reperfusión/fisiopatología , Animales , Arteriolas/efectos de los fármacos , Arteriolas/patología , Iminas/administración & dosificación , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Conejos , Daño por Reperfusión/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...