Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(12): e0255752, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34919547

RESUMEN

Pink salmon (Oncorhynchus gorbuscha) adults are the smallest of the five Pacific salmon native to the western Pacific Ocean. Pink salmon are also the most abundant of these species and account for a large proportion of the commercial value of the salmon fishery worldwide. A two-year life history of pink salmon generates temporally isolated populations that spawn either in even-years or odd-years. To uncover the influence of this genetic isolation, reference genome assemblies were generated for each year-class and whole genome re-sequencing data was collected from salmon of both year-classes. The salmon were sampled from six Canadian rivers and one Japanese river. At multiple centromeres we identified peaks of Fst between year-classes that were millions of base-pairs long. The largest Fst peak was also associated with a million base-pair chromosomal polymorphism found in the odd-year genome near a centromere. These Fst peaks may be the result of a centromere drive or a combination of reduced recombination and genetic drift, and they could influence speciation. Other regions of the genome influenced by odd-year and even-year temporal isolation and tentatively under selection were mostly associated with genes related to immune function, organ development/maintenance, and behaviour.


Asunto(s)
Proteínas de Peces/genética , Especiación Genética , Genoma , Estadios del Ciclo de Vida/genética , Reproducción/genética , Salmón/genética , Animales , Canadá , Femenino , Proteínas de Peces/clasificación , Proteínas de Peces/metabolismo , Expresión Génica , Genética de Población , Genómica/métodos , Japón , Masculino , Océano Pacífico , Polimorfismo Genético , Aislamiento Reproductivo , Ríos , Salmón/clasificación , Salmón/crecimiento & desarrollo , Salmón/metabolismo , Secuenciación Completa del Genoma
2.
Evol Appl ; 13(10): 2791-2806, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33294023

RESUMEN

Variation in size and age at maturity is an important component of life history that is influenced by both environmental and genetic factors. In salmonids, large size confers a direct reproductive advantage through increased fecundity and egg quality in females, while larger males gain a reproductive advantage by monopolizing access to females. In addition, variation in size and age at maturity in males can be associated with different reproductive strategies; younger smaller males may gain reproductive success by sneaking among mating pairs. In both sexes, there is a trade-off between older age and increased reproductive success and increased risk of mortality by delaying reproduction. We identified four Y-chromosome haplogroups that showed regional- and population-specific variation in frequency using RADseq data for 21 populations of Alaska Chinook salmon. We then characterized the range-wide distribution of these haplogroups using GT-seq assays. These haplogroups exhibited associations with size at maturity in multiple populations, suggesting that lack of recombination between X and Y-chromosomes has allowed Y-chromosome haplogroups to capture different alleles that influence size at maturity. Ultimately, conservation of life history diversity in Chinook salmon may require conservation of Y-chromosome haplotype diversity.

3.
G3 (Bethesda) ; 10(5): 1553-1561, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32165371

RESUMEN

Many studies exclude loci that exhibit linkage disequilibrium (LD); however, high LD can signal reduced recombination around genomic features such as chromosome inversions or sex-determining regions. Chromosome inversions and sex-determining regions are often involved in adaptation, allowing for the inheritance of co-adapted gene complexes and for the resolution of sexually antagonistic selection through sex-specific partitioning of genetic variants. Genomic features such as these can escape detection when loci with LD are removed; in addition, failing to account for these features can introduce bias to analyses. We examined patterns of LD using network analysis to identify an overlapping chromosome inversion and sex-determining region in chum salmon. The signal of the inversion was strong enough to show up as false population substructure when the entire dataset was analyzed, while the effect of the sex-determining region on population structure was only obvious after restricting analysis to the sex chromosome. Understanding the extent and geographic distribution of inversions is now a critically important part of genetic analyses of natural populations. Our results highlight the importance of analyzing and understanding patterns of LD in genomic dataset and the perils of excluding or ignoring loci exhibiting LD. Blindly excluding loci in LD would have prevented detection of the sex-determining region and chromosome inversion while failing to understand the genomic features leading to high-LD could have resulted in false interpretations of population structure.


Asunto(s)
Oncorhynchus keta , Animales , Inversión Cromosómica , Femenino , Genómica , Desequilibrio de Ligamiento , Masculino , Polimorfismo de Nucleótido Simple , Cromosomas Sexuales
4.
Conserv Biol ; 34(1): 54-65, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30693970

RESUMEN

As the conservation challenges increase, new approaches are needed to help combat losses in biodiversity and slow or reverse the decline of threatened species. Genome-editing technology is changing the face of modern biology, facilitating applications that were unimaginable only a decade ago. The technology has the potential to make significant contributions to the fields of evolutionary biology, ecology, and conservation, yet the fear of unintended consequences from designer ecosystems containing engineered organisms has stifled innovation. To overcome this gap in the understanding of what genome editing is and what its capabilities are, more research is needed to translate genome-editing discoveries into tools for ecological research. Emerging and future genome-editing technologies include new clustered regularly interspaced short palindromic repeats (CRISPR) targeted sequencing and nucleic acid detection approaches as well as species genetic barcoding and somatic genome-editing technologies. These genome-editing tools have the potential to transform the environmental sciences by providing new noninvasive methods for monitoring threatened species or for enhancing critical adaptive traits. A pioneering effort by the conservation community is required to apply these technologies to real-world conservation problems.


Transformación de la Ecología y la Biología de la Conservación por medio de la Edición Genómica Resumen Conforme aumentan los retos de conservación, se necesitan nuevas estrategias para ayudar a combatir las pérdidas de biodiversidad y para disminuir o revertir la declinación de especies. La tecnología de edición genómica está cambiando el rostro de la biología moderna, facilitando aplicaciones que eran inimaginables hace una década. Esta tecnología tiene el potencial de contribuir significativamente en los campos de la biología evolutiva, la ecología y la conservación, aun así, el miedo a las consecuencias accidentales de los ecosistemas planeados que contienen organismos diseñados ha sofocado a la innovación. Para sobreponerse a este vacío en el entendimiento de lo que es la edición genómica y cuáles son sus capacidades se requiere de mayor investigación para traducir los descubrimientos de la edición genómica a herramientas para la investigación ecológica. Las tecnologías de edición genómica emergentes y futuras incluyen nuevas estrategias CRISPR enfocadas en la secuenciación y detección de ácidos nucleicos, así como tecnologías de definición del código de barras genético de las especies y de edición somática de genes. Estas herramientas de edición genómica tienen el potencial para transformar las ciencias ambientales al proporcionar nuevos métodos no invasivos para el monitoreo de especies amenazadas o para mejorar las características adaptativas más importantes. Se requiere de un esfuerzo vanguardista por parte de la comunidad conservadora para aplicar esta tecnología a los problemas de conservación en el mundo real.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Conservación de los Recursos Naturales , Ecosistema
5.
Mol Ecol ; 28(9): 2254-2271, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30913324

RESUMEN

Understanding the genetic mechanisms that facilitate adaptive radiation is an important component of evolutionary biology. Here, we genotyped 82 neutral SNPs, seven SNPs in islands of divergence identified in a previous study (island SNPs), and a region of the major histocompatibility complex (MHC) in 32 populations of sockeye salmon to investigate whether conserved genes and genomic regions are involved in adaptive radiation. Populations representing three ecotypes were sampled from seven drainages with differing habitats and colonization histories spanning a range of 2,000 km. We found strong signatures of parallel selection across drainages at the island SNPs and MHC, suggesting that the same loci undergo divergent selection during adaptive radiation. However, patterns of differentiation at most island SNPs and the MHC were not associated with ecotypes, suggesting that these loci are responding differently to a mosaic of selective pressures. Our study provides some of the first evidence that conserved genomic islands may be involved in adaptive divergence of salmon populations. Additionally, our data provide further support for the hypothesis that sockeye salmon inhabiting rivers unconnected to lakes harbour similar genetic diversity across large distances, are likely the ancestral form of the species, and have repeatedly recolonized lake systems as they have become available after glacial recession. Finally, our results highlight the value and importance of validating outlier loci by screening additional populations and regions, a practice that will hopefully become more common in the future.


Asunto(s)
Complejo Mayor de Histocompatibilidad/genética , Polimorfismo de Nucleótido Simple , Salmón/genética , Alaska , Animales , Evolución Biológica , Ecotipo , Genética de Población , Lagos , Ríos , Selección Genética
6.
Mol Ecol ; 28(6): 1412-1427, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30714254

RESUMEN

Migratory behaviour patterns in animals are controlled by a complex genetic architecture. Rainbow trout (Oncorhynchus mykiss) is a salmonid fish that spawns in streams but exhibits three primary life history pathways: stream-resident (fluvial), lake-migrant (adfluvial) and ocean-migrant (anadromous). Previous studies examining fluvial and anadromous O. mykiss have identified several genes associated with life history divergence including the presence of an inversion complex within chromosome 5 (Omy05) that appears to maintain a suite of linked genes controlling migratory behaviour. However, adfluvial trout are migratory without being anadromous, and the genetic basis for this life history has not been investigated from evolutionary perspectives. We sampled wild, native nonanadromous rainbow trout occupying connected stream and lake habitats in a southwest Alaskan watershed to determine whether these fish exhibit genetic divergence between fluvial and adfluvial ecotypes, and whether that divergence parallels that documented in fluvial and anadromous O. mykiss. Data from restriction site-associated DNA (RAD) sequencing revealed an association between frequencies of both the Omy05 inversion complex and other single nucleotide polymorphisms (SNPs) with habitat type (stream or lake), supporting the genetic divergence of fluvial and adfluvial individuals in sympatry. The presence of a genetic basis for migration into lakes, analogous to that documented for anadromy, indicates that the adfluvial ecotype must be recognized separately from the fluvial form of O. mykiss even though neither is anadromous. These results highlight the genetic architecture underlying migration and the importance of chromosomal inversions in promoting and sustaining intraspecific diversity.


Asunto(s)
Evolución Biológica , Inversión Cromosómica/genética , Ecotipo , Oncorhynchus mykiss/genética , Migración Animal , Animales , Ecosistema , Agua Dulce , Especiación Genética , Lagos , Polimorfismo de Nucleótido Simple/genética , Recombinación Genética , Análisis de Secuencia de ADN
7.
Mol Ecol ; 27(20): 3965-3967, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30353598

RESUMEN

Humans by their very nature alter the distribution of species. Be it introduction of exotic species, habitat alterations or construction of barriers, anthropogenic changes provide novel experimental systems for the molecular ecologist to study evolutionary change. These events often provide a contradiction. Effective population sizes are generally low, and introduced populations are typically characterized by reduced diversity consistent with theoretical predictions of population bottlenecks and founder effects. However, despite reduced diversity, rapid change sometimes occurs. Identification of genomic regions associated with these rapid adaptive responses to novel selection pressures provides a window into genomic regions important in adaptive diversity, both in the novel and native ranges. These studies also provide an important means to estimate the pace of evolutionary change. In this issue, Willoughby et al. () compared the heterozygosity of steelhead (the anadromous form of rainbow trout Oncorhynchus mykiss) introduced into Lake Michigan in the late 1880s to the putative source population from the ancestral California range. After 25 generations of isolation in Lake Michigan, Willoughby et al. () found consistent genomewide reductions in genetic diversity as estimated by a measure of pooled heterozygosity. Despite this overall reduction in heterozygosity, three chromosomal regions showed signals of rapid adaptation and contained genes associated with osmoregulatory and wound-healing functions.


Asunto(s)
Genoma , Oncorhynchus mykiss/genética , Animales , California , Cromosomas , Variación Genética , Humanos , Michigan
8.
Ecol Evol ; 8(12): 6192-6209, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29988411

RESUMEN

Genetics data have provided unprecedented insights into evolutionary aspects of colonization by non-native populations. Yet, our understanding of how artificial (human-mediated) and natural dispersal pathways of non-native individuals influence genetic metrics, evolution of genetic structure, and admixture remains elusive. We capitalize on the widespread colonization of Chinook salmon Oncorhynchus tshawytscha in South America, mediated by both dispersal pathways, to address these issues using data from a panel of polymorphic SNPs. First, genetic diversity and the number of effective breeders (Nb) were higher among artificial than natural populations. Contemporary gene flow was common between adjacent artificial and natural and adjacent natural populations, but uncommon between geographically distant populations. Second, genetic structure revealed four distinct clusters throughout the Chinook salmon distributional range with varying levels of genetic connectivity. Isolation by distance resulted from weak differentiation between adjacent artificial and natural and between natural populations, with strong differentiation between distant Pacific Ocean and Atlantic Ocean populations, which experienced strong genetic drift. Third, genetic mixture analyses revealed the presence of at least six donor geographic regions from North America, some of which likely hybridized as a result of multiple introductions. Relative propagule pressure or the proportion of Chinook salmon propagules introduced from various geographic regions according to government records significantly influenced genetic mixtures for two of three artificial populations. Our findings support a model of colonization in which high-diversity artificial populations established first; some of these populations exhibited significant admixture resulting from propagule pressure. Low-diversity natural populations were likely subsequently founded from a reduced number of individuals.

9.
Mol Ecol Resour ; 18(3): 570-579, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29394521

RESUMEN

Whole-genome duplications have occurred in the recent ancestors of many plants, fish and amphibians. Signals of these whole-genome duplications still exist in the form of paralogous loci. Recent advances have allowed reliable identification of paralogs in genotyping-by-sequencing (GBS) data such as that generated from restriction-site-associated DNA sequencing (RADSeq); however, excluding paralogs from analyses is still routine due to difficulties in genotyping. This exclusion of paralogs may filter a large fraction of loci, including loci that may be adaptively important or informative for population genetic analyses. We present a maximum-likelihood method for inferring allele dosage in paralogs and assess its accuracy using simulated GBS, empirical RADSeq and amplicon sequencing data from Chinook salmon. We accurately infer allele dosage for some paralogs from a RADSeq data set and show how accuracy is dependent upon both read depth and allele frequency. The amplicon sequencing data set, using RADSeq-derived markers, achieved sufficient depth to infer allele dosage for all paralogs. This study demonstrates that RADSeq locus discovery combined with amplicon sequencing of targeted loci is an effective method for incorporating paralogs into population genetic analyses.


Asunto(s)
Dosificación de Gen , Variación Genética , Técnicas de Genotipaje , Salmón/genética , Animales , Conjuntos de Datos como Asunto , Frecuencia de los Genes , Genética de Población/métodos , Genoma , Funciones de Verosimilitud , Análisis de Secuencia de ADN/métodos
10.
Ecol Evol ; 8(1): 273-285, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29321870

RESUMEN

Different pathways of propagation and dispersal of non-native species into new environments may have contrasting demographic and genetic impacts on established populations. Repeated introductions of rainbow trout (Oncorhynchus mykiss) to Chile in South America, initially through stocking and later through aquaculture escapes, provide a unique setting to contrast these two pathways. Using a panel of single nucleotide polymorphisms, we found contrasting genetic metrics and patterns among naturalized trout in Lake Llanquihue, Chile's largest producer of salmonid smolts for nearly 50 years, and Lake Todos Los Santos (TLS), a reference lake where aquaculture has been prohibited by law. Trout from Lake Llanquihue showed higher genetic diversity, weaker genetic structure, and larger estimates for the effective number of breeders (Nb) than trout from Lake TLS. Trout from Lake TLS were divergent from Lake Llanquihue and showed marked genetic structure and a significant isolation-by-distance pattern consistent with secondary contact between documented and undocumented stocking events in opposite shores of the lake. Multiple factors, including differences in propagule pressure, origin of donor populations, lake geomorphology, habitat quality or quantity, and life history, may help explain contrasting genetic metrics and patterns for trout between lakes. We contend that high propagule pressure from aquaculture may not only increase genetic diversity and Nb via demographic effects and admixture, but also may impact the evolution of genetic structure and increase gene flow, consistent with findings from artificially propagated salmonid populations in their native and naturalized ranges.

11.
Mol Ecol ; 26(17): 4509-4522, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28600900

RESUMEN

A whole-genome duplication (WGD) doubles the entire genomic content of a species and is thought to have catalysed adaptive radiation in some polyploid-origin lineages. However, little is known about general consequences of a WGD because gene duplicates (i.e., paralogs) are commonly filtered in genomic studies; such filtering may remove substantial portions of the genome in data sets from polyploid-origin species. We demonstrate a new method that enables genome-wide scans for signatures of selection at both nonduplicated and duplicated loci by taking locus-specific copy number into account. We apply this method to RAD sequence data from different ecotypes of a polyploid-origin salmonid (Oncorhynchus nerka) and reveal signatures of divergent selection that would have been missed if duplicated loci were filtered. We also find conserved signatures of elevated divergence at pairs of homeologous chromosomes with residual tetrasomic inheritance, suggesting that joint evolution of some nondiverged gene duplicates may affect the adaptive potential of these genes. These findings illustrate that including duplicated loci in genomic analyses enables novel insights into the evolutionary consequences of WGDs and local segmental gene duplications.


Asunto(s)
Duplicación de Gen , Genética de Población , Poliploidía , Salmón/genética , Animales , Cromosomas , Ecotipo , Evolución Molecular , Genoma , Selección Genética
12.
Mol Ecol Resour ; 17(3): 356-361, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28028934

RESUMEN

In their recently corrected manuscript, "Breaking RAD: An evaluation of the utility of restriction site associated DNA sequencing for genome scans of adaptation", Lowry et al. argue that genome scans using RADseq will miss many loci under selection due to a combination of sparse marker density and low levels of linkage disequilibrium in most species. We agree that marker density and levels of LD are important considerations when designing a RADseq study; however, we dispute that RAD-based genome scans are as prone to failure as Lowry et al. suggest. Their arguments ignore the flexible nature of RADseq; the availability of different restriction enzymes and capacity for combining restriction enzymes ensures that a well-designed study should be able to generate enough markers for efficient genome coverage. We further believe that simplifying assumptions about linkage disequilibrium in their simulations are invalid in many species. Finally, it is important to note that the alternative methods proposed by Lowry et al. have limitations equal to or greater than RADseq. The wealth of studies with positive impactful findings that have used RAD genome scans instead supports the argument that properly conducted RAD genome scans are an effective method for gaining insight into ecology and evolution, particularly for non-model organisms and those with large or complex genomes.


Asunto(s)
Genoma , Secuencia de Bases , Enzimas de Restricción del ADN , Desequilibrio de Ligamiento , Análisis de Secuencia de ADN
13.
Mol Ecol Resour ; 17(4): 656-669, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27762098

RESUMEN

Whole-genome duplications have occurred in the recent ancestors of many plants, fish, and amphibians, resulting in a pervasiveness of paralogous loci and the potential for both disomic and tetrasomic inheritance in the same genome. Paralogs can be difficult to reliably genotype and are often excluded from genotyping-by-sequencing (GBS) analyses; however, removal requires paralogs to be identified which is difficult without a reference genome. We present a method for identifying paralogs in natural populations by combining two properties of duplicated loci: (i) the expected frequency of heterozygotes exceeds that for singleton loci, and (ii) within heterozygotes, observed read ratios for each allele in GBS data will deviate from the 1:1 expected for singleton (diploid) loci. These deviations are often not apparent within individuals, particularly when sequence coverage is low; but, we postulated that summing allele reads for each locus over all heterozygous individuals in a population would provide sufficient power to detect deviations at those loci. We identified paralogous loci in three species: Chinook salmon (Oncorhynchus tshawytscha) which retains regions with ongoing residual tetrasomy on eight chromosome arms following a recent whole-genome duplication, mountain barberry (Berberis alpina) which has a large proportion of paralogs that arose through an unknown mechanism, and dusky parrotfish (Scarus niger) which has largely rediploidized following an ancient whole-genome duplication. Importantly, this approach only requires the genotype and allele-specific read counts for each individual, information which is readily obtained from most GBS analysis pipelines.


Asunto(s)
Berberis/genética , Sitios Genéticos , Genética de Población , Técnicas de Genotipaje , Salmón/genética , Animales , Mapeo Cromosómico , Bases de Datos Genéticas , Genotipo , Heterocigoto
14.
Mol Ecol ; 26(2): 554-570, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27864910

RESUMEN

Regions of the genome displaying elevated differentiation (genomic islands of divergence) are thought to play an important role in local adaptation, especially in populations experiencing high gene flow. However, the characteristics of these islands as well as the functional significance of genes located within them remain largely unknown. Here, we used data from thousands of SNPs aligned to a linkage map to investigate genomic islands of divergence in three ecotypes of sockeye salmon (Oncorhynchus nerka) from a single drainage in southwestern Alaska. We found ten islands displaying high differentiation among ecotypes. Conversely, neutral structure observed throughout the rest of the genome was low and not partitioned by ecotype. One island on linkage group So13 was particularly large and contained six SNPs with FST  > 0.14 (average FST of neutral SNPs = 0.01). Functional annotation revealed that the peak of this island contained a nonsynonymous mutation in a gene involved in growth in other species (TULP4). The islands that we discovered were relatively small (80-402 Kb), loci found in islands did not show reduced levels of diversity, and loci in islands displayed slightly elevated linkage disequilibrium. These attributes suggest that the islands discovered here were likely generated by divergence hitchhiking; however, we cannot rule out the possibility that other mechanisms may have produced them. Our results suggest that islands of divergence serve an important role in local adaptation with gene flow and represent a significant advance towards understanding the genetic basis of ecotypic differentiation.


Asunto(s)
Ecotipo , Genética de Población , Islas Genómicas , Salmón/genética , Alaska , Animales , Flujo Génico , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple
15.
J Hered ; 107(6): 559-66, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27417855

RESUMEN

Loci that can be used to screen for sex in salmon can provide important information for study of both wild and cultured populations. Here, we tested for associations between sex and genotypes at thousands of loci available from a genotyping-by-sequencing (GBS) dataset to discover sex-associated loci in sockeye salmon (Oncorhynchus nerka). We discovered 7 sex-associated loci, developed high-throughput assays for 2 loci, and tested the utility of these 2 assays in 8 collections of sockeye salmon sampled throughout North America. We also screened an existing assay based on the master sex-determining gene in salmon (sdY) in these collections. The ability of GBS-derived loci to assign fish to their phenotypic sex varied substantially among collections suggesting that recombination between the loci that we discovered and the sex-determining gene has occurred. Assignment accuracy to phenotypic sex was much higher with the sdY assay but was still less than 100%. Alignment of sequences from GBS-derived loci to draft genomes for 2 salmonids provided strong evidence that many of these loci are found on chromosomes orthologous to the known sex chromosome in sockeye salmon. Our study is the first to describe the approximate location of the sex-determining region in sockeye salmon and indicates that sdY is also the master sex-determining gene in this species. However, discordances between sdY genotypes and phenotypic sex and the variable performance of GBS-derived loci warrant more research.


Asunto(s)
Sitios de Carácter Cuantitativo , Salmón/genética , Procesos de Determinación del Sexo/genética , Animales , Femenino , Frecuencia de los Genes , Genómica/métodos , Genotipo , Masculino , Recombinación Genética , Análisis de Secuencia de ADN
16.
Mol Ecol ; 25(10): 2117-29, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26939067

RESUMEN

Many plants and animals of polyploid origin are currently enjoying a genomics explosion enabled by modern sequencing and genotyping technologies. However, routine filtering of duplicated loci in most studies using genotyping by sequencing introduces an unacceptable, but often overlooked, bias when detecting selection. Retained duplicates from ancient whole-genome duplications (WGDs) may be found throughout genomes, whereas retained duplicates from recent WGDs are concentrated at distal ends of some chromosome arms. Additionally, segmental duplicates can be found at distal ends or nearly anywhere in a genome. Evidence shows that these duplications facilitate adaptation through one of two pathways: neo-functionalization or increased gene expression. Filtering duplicates removes distal ends of some chromosomes, and distal ends are especially known to harbour adaptively important genes. Thus, filtering of duplicated loci impoverishes the interpretation of genomic data as signals from contiguous duplicated genes are ignored. We review existing strategies to genotype and map duplicated loci; we focus in detail on an overlooked strategy of using gynogenetic haploids (1N) as a part of new genotyping by sequencing studies. We provide guidelines on how to use this haploid strategy for studies on polyploid-origin vertebrates including how it can be used to screen duplicated loci in natural populations. We conclude by discussing areas of research that will benefit from better inclusion of polyploid loci; we particularly stress the sometimes overlooked fact that basing genomic studies on dense maps provides value added in the form of locating and annotating outlier loci or colocating outliers into islands of divergence.


Asunto(s)
Sitios Genéticos , Genética de Población/métodos , Técnicas de Genotipaje/métodos , Poliploidía , Animales , Mapeo Cromosómico , Dosificación de Gen , Genoma , Genotipo , Salmonidae/genética , Análisis de Secuencia de ADN
17.
J Hered ; 107(2): 122-33, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26712859

RESUMEN

Understanding the genetic architecture of phenotypic traits can provide important information about the mechanisms and genomic regions involved in local adaptation and speciation. Here, we used genotyping-by-sequencing and a combination of previously published and newly generated data to construct sex-specific linkage maps for sockeye salmon (Oncorhynchus nerka). We then used the denser female linkage map to conduct quantitative trait locus (QTL) analysis for 4 phenotypic traits in 3 families. The female linkage map consisted of 6322 loci distributed across 29 linkage groups and was 4082 cM long, and the male map contained 2179 loci found on 28 linkage groups and was 2291 cM long. We found 26 QTL: 6 for thermotolerance, 5 for length, 9 for weight, and 6 for condition factor. QTL were distributed nonrandomly across the genome and were often found in hotspots containing multiple QTL for a variety of phenotypic traits. These hotspots may represent adaptively important regions and are excellent candidates for future research. Comparing our results with studies in other salmonids revealed several regions with overlapping QTL for the same phenotypic trait, indicating these regions may be adaptively important across multiple species. Altogether, our study demonstrates the utility of genomic data for investigating the genetic basis of important phenotypic traits. Additionally, the linkage map created here will enable future research on the genetic basis of phenotypic traits in salmon.


Asunto(s)
Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Salmón/genética , Análisis de Secuencia de ADN , Animales , Femenino , Ligamiento Genético , Genotipo , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple
18.
Mol Ecol Resour ; 16(3): 655-61, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26561199

RESUMEN

Linkage mapping is often used to identify genes associated with phenotypic traits and for aiding genome assemblies. Still, many emerging maps do not locate centromeres - an essential component of the genomic landscape. Here, we demonstrate that for genomes with strong chiasma interference, approximate centromere placement is possible by phasing the same data used to generate linkage maps. Assuming one obligate crossover per chromosome arm, information about centromere location can be revealed by tracking the accumulated recombination frequency along linkage groups, similar to half-tetrad analyses. We validate the method on a linkage map for sockeye salmon (Oncorhynchus nerka) with known centromeric regions. Further tests suggest that the method will work well in other salmonids and other eukaryotes. However, the method performed weakly when applied to a male linkage map (rainbow trout; O. mykiss) characterized by low and unevenly distributed recombination - a general feature of male meiosis in many species. Further, a high frequency of double crossovers along chromosome arms in barley reduced resolution for locating centromeric regions on most linkage groups. Despite these limitations, our method should work well for high-density maps in species with strong recombination interference and will enrich many existing and future mapping resources.


Asunto(s)
Centrómero , Mapeo Cromosómico , Biología Computacional/métodos , Ligamiento Genético , Recombinación Genética , Animales , Hordeum/genética , Salmonidae/genética
19.
PLoS One ; 10(11): e0142040, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26544983

RESUMEN

Knowledge about the genetic underpinnings of invasions-a theme addressed by invasion genetics as a discipline-is still scarce amid well documented ecological impacts of non-native species on ecosystems of Patagonia in South America. One of the most invasive species in Patagonia's freshwater systems and elsewhere is rainbow trout (Oncorhynchus mykiss). This species was introduced to Chile during the early twentieth century for stocking and promoting recreational fishing; during the late twentieth century was reintroduced for farming purposes and is now naturalized. We used population- and individual-based inference from single nucleotide polymorphisms (SNPs) to illuminate three objectives related to the establishment and naturalization of Rainbow Trout in Lake Llanquihue. This lake has been intensively used for trout farming during the last three decades. Our results emanate from samples collected from five inlet streams over two seasons, winter and spring. First, we found that significant intra- population (temporal) genetic variance was greater than inter-population (spatial) genetic variance, downplaying the importance of spatial divergence during the process of naturalization. Allele frequency differences between cohorts, consistent with variation in fish length between spring and winter collections, might explain temporal genetic differences. Second, individual-based Bayesian clustering suggested that genetic structure within Lake Llanquihue was largely driven by putative farm propagules found at one single stream during spring, but not in winter. This suggests that farm broodstock might migrate upstream to breed during spring at that particular stream. It is unclear whether interbreeding has occurred between "pure" naturalized and farm trout in this and other streams. Third, estimates of the annual number of breeders (Nb) were below 73 in half of the collections, suggestive of genetically small and recently founded populations that might experience substantial genetic drift. Our results reinforce the notion that naturalized trout originated recently from a small yet genetically diverse source and that farm propagules might have played a significant role in the invasion of Rainbow Trout within a single lake with intensive trout farming. Our results also argue for proficient mitigation measures that include management of escapes and strategies to minimize unintentional releases from farm facilities.


Asunto(s)
Agricultura , Cruzamiento , Especies Introducidas , Oncorhynchus mykiss/genética , Animales , Chile , Ecosistema , Genotipo , Lagos , Polimorfismo de Nucleótido Simple
20.
G3 (Bethesda) ; 5(11): 2463-73, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26384769

RESUMEN

Meiotic recombination is fundamental for generating new genetic variation and for securing proper disjunction. Further, recombination plays an essential role during the rediploidization process of polyploid-origin genomes because crossovers between pairs of homeologous chromosomes retain duplicated regions. A better understanding of how recombination affects genome evolution is crucial for interpreting genomic data; unfortunately, current knowledge mainly originates from a few model species. Salmonid fishes provide a valuable system for studying the effects of recombination in nonmodel species. Salmonid females generally produce thousands of embryos, providing large families for conducting inheritance studies. Further, salmonid genomes are currently rediploidizing after a whole genome duplication and can serve as models for studying the role of homeologous crossovers on genome evolution. Here, we present a detailed interrogation of recombination patterns in sockeye salmon (Oncorhynchus nerka). First, we use RAD sequencing of haploid and diploid gynogenetic families to construct a dense linkage map that includes paralogous loci and location of centromeres. We find a nonrandom distribution of paralogs that mainly cluster in extended regions distally located on 11 different chromosomes, consistent with ongoing homeologous recombination in these regions. We also estimate the strength of interference across each chromosome; results reveal strong interference and crossovers are mostly limited to one per arm. Interference was further shown to continue across centromeres, but metacentric chromosomes generally had at least one crossover on each arm. We discuss the relevance of these findings for both mapping and population genomic studies.


Asunto(s)
Cromosomas/genética , Ligamiento Genético , Genoma , Recombinación Genética , Salmón/genética , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...