Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(4): e0396923, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38441466

RESUMEN

Recently discovered tet(X) gene variants have provided new insights into microbial antibiotic resistance mechanisms and their potential consequences for public health. This study focused on detection, analysis, and characterization of Tet(X4)-positive Enterobacterales from the gut microbiota of a healthy cohort of individuals in Singapore using cultivation-dependent and cultivation-independent approaches. Twelve Tet(X4)-positive Enterobacterales strains that were previously obtained from the cohort were fully genome-sequenced and comparatively analyzed. A metagenomic sequencing (MS) data set of the same samples was mined for contigs that harbored the tet(X4) resistance gene. The sequences of tet(X4)-containing contigs and plasmids sequences were compared. The presence of the resistance genes floR and estT (previously annotated as catD) was detected in the same cassette in 10 and 12 out of the 12 tet(X4)-carrying plasmids, respectively. MS detected tet(X4)-containing contigs in 2 out of the 109 subjects, while cultivation-dependent analysis previously reported a prevalence of 10.1%. The tet(X4)-containing sequences assembled from MS data are relatively short (~14 to 33 kb) but show high similarity to the respective plasmid sequences of the isolates. Our findings show that MS can complement efforts in the surveillance of antibiotic resistance genes for clinical samples, while it has a lower sensitivity than a cultivation-based method when the target organism has a low abundance. Further optimization is required if MS is to be utilized in antibiotic resistance surveillance.IMPORTANCEThe global rise in antibiotic resistance makes it necessary to develop and apply new approaches to detect and monitor the prevalence of antibiotic resistance genes in human populations. In this regard, of particular interest are resistances against last-resort antibiotics, such as tigecycline. In this study, we show that metagenomic sequencing can help to detect high abundance of the tigecycline resistance gene tet(X4) in fecal samples from a cohort of healthy human subjects. However, cultivation-based approaches currently remain the most reliable and cost-effective method for detection of antibiotic-resistant bacteria.


Asunto(s)
Gammaproteobacteria , Metagenoma , Humanos , Tigeciclina , Voluntarios Sanos , Antibacterianos/farmacología , Plásmidos/genética , Pruebas de Sensibilidad Microbiana
2.
NPJ Biofilms Microbiomes ; 10(1): 11, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374184

RESUMEN

Studying the gut microbes of marine fishes is an important part of conservation as many fish species are increasingly threatened by extinction. The gut microbiota of only a small fraction of the more than 32,000 known fish species has been investigated. In this study we analysed the intestinal digesta microbiota composition of more than 50 different wild fish species from tropical waters. Our results show that the fish harbour intestinal digesta microbiota that are distinct from that of the surrounding water and that location, domestication status, and host intrinsic factors are strongly associated with the microbiota composition. Furthermore, we show that the vast majority (~97%) of the fish-associated microorganisms do not have any cultured representative. Considering the impact of the microbiota on host health and physiology, these findings underpin the call to also preserve the microbiota of host species, especially those that may be exposed to habitat destruction.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Agua , Peces
3.
Microbiol Resour Announc ; 12(11): e0079723, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37906020

RESUMEN

Here, the complete genome of Paramuribaculum intestinale type strain DSM 100749T(=JCM 33114T) is presented. P. intestinale is a recently described species of Muribaculaceae and was isolated from the gut of C57BL/6 laboratory mice. The genome can serve as an important resource for comparative genomics approaches.

4.
Nat Commun ; 13(1): 6044, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229545

RESUMEN

Despite extensive efforts to address it, the vastness of uncharacterized 'dark matter' microbial genetic diversity can impact short-read sequencing based metagenomic studies. Population-specific biases in genomic reference databases can further compound this problem. Leveraging advances in hybrid assembly (using short and long reads) and Hi-C technologies in a cross-sectional survey, we deeply characterized 109 gut microbiomes from three ethnicities in Singapore to comprehensively reconstruct 4497 medium and high-quality metagenome assembled genomes, 1708 of which were missing in short-read only analysis and with >28× N50 improvement. Species-level clustering identified 70 (>10% of total) novel gut species out of 685, improved reference genomes for 363 species (53% of total), and discovered 3413 strains unique to these populations. Among the top 10 most abundant gut bacteria in our study, one of the species and >80% of strains were unrepresented in existing databases. Annotation of biosynthetic gene clusters (BGCs) uncovered more than 27,000 BGCs with a large fraction (36-88%) unrepresented in current databases, and with several unique clusters predicted to produce bacteriocins that could significantly alter microbiome community structure. These results reveal significant uncharacterized gut microbial diversity in Southeast Asian populations and highlight the utility of hybrid metagenomic references for bioprospecting and disease-focused studies.


Asunto(s)
Bacteriocinas , Microbiota , Pueblo Asiatico/genética , Bacteriocinas/genética , Estudios Transversales , Genoma Humano , Humanos , Metagenoma/genética , Metagenómica/métodos , Microbiota/genética
5.
Microbiol Spectr ; 10(3): e0073522, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35674443

RESUMEN

The lifelong relationship between microorganisms and hosts has a profound impact on the overall health and physiology of the holobiont. Microbiome composition throughout the life span of a host remains largely understudied. Here, the fecal microbiota of conventionally raised C57BL/6J male mice was characterized throughout almost the entire adult life span, from "maturing" (9 weeks) until "very old" (112 weeks) age. Our results suggest that microbiota changes occur throughout life but are more pronounced in maturing to middle-age mice than in mice later in life. Phylum-level analysis indicates a shift of the Bacteroidota-to-Firmicutes ratio in favor of Firmicutes in old and very old mice. More Firmicutes amplicon sequence variants (ASVs) were transient with varying successional patterns than Bacteroidota ASVs, which varied primarily during maturation. Microbiota configurations from five defined life phases were used as training sets in a Bayesian model, which effectively enabled the prediction of host age. These results suggest that age-associated compositional differences may have considerable implications for the interpretation and comparability of animal model-based microbiome studies. The sensitivity of the age prediction to dietary perturbations was tested by applying this approach to two age-matched groups of C57BL/6J mice that were fed either a standard or western diet. The predicted age for the western diet-fed animals was on average 27 ± 11 (mean ± standard deviation) weeks older than that of standard diet-fed animals. This indicates that the fecal microbiota-based predicted age may be influenced not only by the host age and physiology but also potentially by other factors such as diet. IMPORTANCE The gut microbiome of a host changes with age. Cross-sectional studies demonstrate that microbiota of different age groups are distinct but do not demonstrate the temporal change that a longitudinal study is able to show. Here, we performed a longitudinal study of adult mice for over 2 years. We identified life stages where compositional changes were more dynamic and showed temporal changes for the more abundant species. Using a Bayesian model, we could reliably predict the life stages of the mice. Application of the same training set to mice fed different dietary regimens revealed that life-stage age predictions were possible for mice fed the same diet but less so for mice fed different diets. This study sheds light on the temporal changes that occur within the gut microbiota of laboratory mice over their life span and may inform researchers on the appropriate mouse age for their research.


Asunto(s)
Microbioma Gastrointestinal , Animales , Bacteroidetes , Teorema de Bayes , Estudios Transversales , Estudios Longitudinales , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Microbiol Spectr ; 10(4): e0084922, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35699469

RESUMEN

Methanogenic Archaea (methanogens) are a phylogenetically diverse group of microorganisms and are considered to be the most abundant archaeal representatives in the human gut. However, the gut methanogen diversity of human populations in many global regions remains poorly investigated. Here, we report the abundance and diversity of gut methanogenic Archaea in a multi-ethnic cohort of healthy Singaporeans by using a concerted approach of metagenomic sequencing, 16S rRNA gene amplicon sequencing, and quantitative PCR. Our results indicate a mutual exclusion of Methanobrevibacter species, i.e., the highly prevalent Methanobrevibacter smithii and the less prevalent Candidatus Methanobrevibacter intestini in more than 80% of the samples when using an amplicon sequencing-based approach. Leveraging on this finding, we were able to select a fecal sample to isolate a representative strain, TLL-48-HuF1, for Candidatus Methanobrevibacter intestini. The analyzed physiological parameters of M. smithii DSM 861T and strain TLL-48-HuF1 suggest high similarity of the two species. Comparative genome analysis and the mutual exclusion of the Methanobrevibacter species indicate potentially different niche adaptation strategies in the human host, which may support the designation of Candidatus M. intestini as a novel species. IMPORTANCE Methanogens are important hydrogen consumers in the gut and are associated with differing host health. Here, we determine the prevalence and abundance of archaeal species in the guts of a multi-ethnic cohort of healthy Singapore residents. While Methanobrevibacter smithii is the most prevalent and abundant methanogen in the human gut of local subjects, the recently proposed Candidatus Methanobrevibacter intestini is the abundant methanogen in a minority of individuals that harbor them. The observed potential mutual exclusion of M. smithii and Ca. M. intestini provides further support to the proposal that the two physiologically similar strains may belong to different Methanobrevibacter species.


Asunto(s)
Microbioma Gastrointestinal , Methanobrevibacter , Heces , Humanos , Metagenómica , Methanobrevibacter/genética , ARN Ribosómico 16S/genética
7.
Appl Environ Microbiol ; 87(20): e0048821, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34347523

RESUMEN

Multidrug-resistant (MDR) Escherichia coli strains that carry extended-spectrum ß-lactamases (ESBLs) or colistin resistance gene mcr-1 have been identified in the human gut at an increasing incidence worldwide. In this study, we isolated and characterized MDR Enterobacteriaceae from the gut microbiota of healthy Singaporeans and show that the detection rates for ESBL-producing and mcr-positive Enterobacteriaceae are 25.7% (28/109) and 7.3% (8/109), respectively. Whole-genome sequencing analysis of the 37 E. coli isolates assigned them into 25 sequence types and 6 different phylogroups, suggesting that the MDR E. coli gut colonizers are highly diverse. We then analyzed the genetic context of the resistance genes and found that composite transposons played important roles in the cotransfer of blaCTX-M-15/55 and qnrS1, as well as the acquisition of mcr-1. Furthermore, comparative genomic analysis showed that 12 of the 37 MDR E. coli isolates showed high similarity to ESBL-producing E. coli isolates from raw meat products in local markets. By analyzing the core genome single nucleotide polymorphisms (SNPs) shared by these isolates, we identified possible clonal transmission of an MDR E. coli clone between human and raw meat, as well as a group of highly similar IncI2 (Delta) plasmids that might be responsible for the dissemination of mcr-1 in a much wider geographic region. Together, these results suggest that antibiotic resistance may be transmitted between different environmental settings by the expansion of MDR E. coli clones, as well as by the dissemination of resistance plasmids. IMPORTANCE The human gut can harbor both antibiotic-resistant and virulent Escherichia coli which may subsequently cause infections. In this study, we found that multidrug-resistant (MDR) E. coli isolates from the gut of healthy Singaporeans carry a diverse range of antibiotic resistance mechanisms and virulence factor genes and are highly diverse. By comparing their genomes with the extended-spectrum ß-lactamase (ESBL)-producing E. coli isolates from raw meat products that were sampled at a similar time from local markets, we detected an MDR E. coli clone that was possibly transmitted between humans and raw meat products. Furthermore, we also found that a group of resistance plasmids might be responsible for the dissemination of colistin resistance gene mcr-1 in Singapore, Malaysia, and Europe. Our findings call for better countermeasures to block the transmission of antibiotic resistance.


Asunto(s)
Escherichia coli/aislamiento & purificación , Microbioma Gastrointestinal , Antibacterianos/farmacología , Ceftriaxona/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Heces/microbiología , Contaminación de Alimentos/análisis , Humanos , Carne/microbiología , Filogenia , Polimorfismo de Nucleótido Simple , Singapur , Secuenciación Completa del Genoma , beta-Lactamasas/metabolismo
8.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205981

RESUMEN

Dietary changes are known to alter the composition of the gut microbiome. However, it is less understood how repeatable and reversible these changes are and how diet switches affect the microbiota in the various segments of the gastrointestinal tract. Here, a treatment group of conventionally raised laboratory mice is subjected to two periods of western diet (WD) interrupted by a period of standard diet (SD) of the same duration. Beta-diversity analyses show that diet-induced microbiota changes are largely reversible (q = 0.1501; PERMANOVA, weighted-UniFrac comparison of the treatment-SD group to the control-SD group) and repeatable (q = 0.032; PERMANOVA, weighted-UniFrac comparison of both WD treatments). Furthermore, we report that diet switches alter the gut microbiota composition along the length of the intestinal tract in a segment-specific manner, leading to gut segment-specific Firmicutes/Bacteroidota ratios. We identified prevalent and distinct Amplicon Sequencing Variants (ASVs), particularly in genera of the recently described Muribaculaceae, along the gut as well as ASVs that are differentially abundant between segments of treatment and control groups. Overall, this study provides insights into the reversibility of diet-induced microbiota changes and highlights the importance of expanding sampling efforts beyond the collections of fecal samples to characterize diet-dependent and segment-specific microbiome differences.


Asunto(s)
Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/microbiología , Microbiota/genética , Animales , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Dieta Occidental/efectos adversos , Heces/microbiología , Firmicutes/genética , Firmicutes/aislamiento & purificación , Humanos , Ratones , ARN Ribosómico 16S/genética
9.
J Antimicrob Chemother ; 75(12): 3480-3484, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32853333

RESUMEN

OBJECTIVES: The recently discovered tigecycline-inactivating enzyme Tet(X4) can confer high-level tigecycline resistance on its hosts, which makes it a public health concern. This study focused on isolation and screening of Tet(X4)-positive Enterobacteriaceae from the gut microbiota of a cohort of healthy individuals in Singapore. METHODS: MinION and Illumina sequencing was performed to obtain the complete genome sequences of Escherichia coli 2EC1-1 and 94EC. Subsequently, 109 human faecal samples were screened retrospectively for eravacycline-resistant Enterobacteriaceae strains, which were further tested for tet(X4) by PCR. The taxonomy of the isolated strains was determined by 16S rRNA gene PCR and Sanger sequencing. RESULTS: Comparative genomic analysis of E. coli 2EC1-1 and 94EC revealed that both carry tet(X4), which is encoded by IncI1-type plasmids p2EC1-1 and p94EC-2, respectively. Retrospective screening of faecal samples collected from 109 healthy individuals showed that the faecal carriage rate of Tet(X4)-producing Enterobacteriaceae is 10.1% (95% CI = 5.1%-17.3%), suggesting that tet(X4) is widely distributed in the gut microbiota of healthy individuals in Singapore. CONCLUSIONS: To the best of our knowledge, this is the first report on the prevalence of tet(X4) in the gut microbiota of a healthy human cohort, as well as the first description of this resistance mechanism outside of China. Our findings suggest that surveillance of tet(X4) in community settings is vital to monitor the spread of this resistance mechanism.


Asunto(s)
Escherichia coli , Microbioma Gastrointestinal , Antibacterianos/farmacología , China , Farmacorresistencia Bacteriana , Enterobacteriaceae/genética , Humanos , Pruebas de Sensibilidad Microbiana , ARN Ribosómico 16S/genética , Estudios Retrospectivos , Singapur/epidemiología , Tetraciclinas , Tigeciclina
10.
Int J Syst Evol Microbiol ; 70(8): 4725-4729, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32687462

RESUMEN

An anaerobic bacterial strain, named TLL-A4T, was isolated from fecal pellets of conventionally raised C57BL/6J mice. Analysis of the 16S rRNA gene indicated that the strain belongs to the phylum Bacteroidetes and, more specifically, to the recently proposed Muribaculaceae (also known as S24-7 clade or Candidatus Homeothermaceae). Strain TLL-A4T's 16S rRNA gene shared 92.8 % sequence identity with the type strain of the only published species of the genus Muribaculum, Muribaculum intestinale DSM 28989T. Genome-sequencing of TLL-A4T was performed to compare average amino acid identity (AAI) value and percentage of conserved proteins (POCP) between both strains. The AAI analysis revealed that strain TLL-A4T had high identity (69.8 %) with M. intestinale DSM 28989T, while the POCP was 56 %. These values indicate that strain TLL-A4T could be considered a member of the genus Muribaculum but not belonging to the species M. intestinale. Quinone analysis indicated MK10 (63 %) and MK11 (32 %) as major quinones in the membrane, while MK9 was only present as a minor component (5 %). The main cellular fatty acid was anteiso-C15 : 0 (42.8 %); summed feature 11 (17.5 %), C15 : 0 iso (13.4 %), C18 : 1 ω9c (5.6 %), C16.0 3-OH (4.5 %) and C15 : 0 (4.2 %) were detected in minor amounts. Analysis of enzyme activities using the API 32A and API 20A kits indicated major differences between strain TLL-A4T and Muribaculum intestinale DSM 28989T. Based on genotypic, phylogenetic and phenotypic differences, strain TLL-A4T is considered to represent a novel species of the genus Muribaculum, for which the name Muribaculum gordoncarteri sp. nov. is proposed. The type strain is TLL-A4T (=DSM 108194T=KCTC 15770T).


Asunto(s)
Bacteroidetes/clasificación , Heces/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/química
11.
Int J Syst Evol Microbiol ; 70(5): 3105-3110, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32250242

RESUMEN

Three bacterial strains, C9, H5 and TLL-A3, were isolated from fecal pellets of conventionally raised C57BL/6J mice. Analysis of 16S rRNA genes indicated that the strains belonged to the Muribaculaceae, and shared 91.6-99.9 % sequence identity with the recently described Duncaniella muris DSM 103720T. Genome-sequencing of the isolates was performed to compare average nucleotide identities (ANI) between strains. The ANI analysis revealed that all isolates shared highest ANI with D. muris DSM 103720T, with strain C9 being most similar (ANI: 98.0 %) followed by strains H5 (ANI: 76.4 %) and TLL-A3 (ANI: 74.4 %). Likewise, digital DNA-DNA hybridization (dDDH) indicated high similarity of strain C9 (dDDH: 86.6 %) to D. muris DSM 103720T, but strains H5 and TLL-A3 showed lower similarity (dDDH <35 %) to either of the three type species of the Muribaculaceae (Muribaculum intestinale DSM 28989T , Paramuribaculum intestinale DSM 100749T, D. muris DSM 103720T). MK-10 and MK-11 were abundant in all three isolates, but concentrations varied between species. Based on genotypic, phylogenetic and phenotypic differences, the strains TLL-A3 and H5 are considered to represent novel species of the genus Duncaniella, for which the names Duncaniella freteri sp. nov., and Duncaniella dubosii sp. nov., are proposed. The respective type strains are TLL-A3T (=DSM 108168T=KCTC 15769T), and H5T (=DSM 107170T=KCTC 15734T). Strain C9 reveals limited sequence dissimilarity and minor differences in morphological properties with Duncaniella muris DSM 103720T and is therefore proposed to belong to the same species. The respective strain is C9 (=DSM 107165=KCTC 15733).


Asunto(s)
Bacteroidetes/clasificación , Heces/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Ratones , Ratones Endogámicos C57BL , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
Antonie Van Leeuwenhoek ; 113(6): 737-752, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32080799

RESUMEN

Outbreaks of diseases in farmed fish remain a recurring problem despite the development of vaccines and improved hygiene standards on aquaculture farms. One commonly observed bacterial disease in tropical aquaculture of the South-East Asian region is tenacibaculosis, which is attributed to members of the genus Tenacibaculum (family Flavobacteriaceae, phylum Bacteroidetes), most notably Tenacibaculum maritimum. The impact of tenacibaculosis on the fish microbiota remains poorly understood. In this study, we analysed the microbiota of different tissues of commercially reared Asian seabass (Lates calcarifer) that showed symptoms of tenacibaculosis and compared the microbial communities to those of healthy and experimentally infected fish that were exposed to diseased farmed fish. The relative abundance of Tenacibaculum species in experimentally infected fish was significantly lower than in commercially reared diseased fish and revealed a higher prevalence of different Tenacibaculum species. One isolated strain, TLL-A2T, shares 98.7% 16S rRNA gene identity with Tenacibaculum mesophilum DSM 13764T. The genome of strain TLL-A2T was sequenced and compared to that of T. mesophilum DSM 13764T. Analysis of average nucleotide identity and comparative genome analysis revealed only 92% identity between T. mesophilum DSM 13764T and strain TLL-A2T and differences between the two strains in predicted carbohydrate activating enzymes respectively. Phenotypic comparison between strain TLL-A2T and T. mesophilum DSM 13764T indicated additional differences, such as growth response at different salt concentrations. Based on molecular and phenotypic differences, strain TLL-A2T (=DSM 106434T, KCTC 62393T) is proposed as the type strain of Tenacibaculum singaporense sp. nov.


Asunto(s)
Lubina/microbiología , Enfermedades de los Peces/microbiología , Microbiota , Tenacibaculum , Animales , Acuicultura , Peces , Flavobacteriaceae/clasificación , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/patología , Genes Bacterianos , Genoma Bacteriano , Perciformes/microbiología , Fenotipo , Filogenia , ARN Ribosómico 16S/genética , Tenacibaculum/clasificación , Tenacibaculum/genética , Tenacibaculum/crecimiento & desarrollo , Tenacibaculum/aislamiento & purificación
13.
Microbiol Resour Announc ; 8(48)2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776213

RESUMEN

Here, the complete genome sequence of sponge-associated Tenacibaculum mesophilum DSM 13764T is presented. T. mesophilum is a close relative of the fish pathogen T. maritimum, which causes significant fish disease outbreaks in aquaculture facilities. The T. mesophilum genome sequence will serve as an important resource for comparative genomics approaches.

14.
Int J Syst Evol Microbiol ; 69(11): 3616-3622, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31502946

RESUMEN

The use of gnotobiotics has attracted wide interest in recent years due to technological advances that have revealed the importance of host-associated microbiomes for host physiology and health. One of the oldest and most important gnotobiotic mouse model, the altered Schaedler flora (ASF) has been used for several decades. ASF comprises eight different bacterial strains, which have been characterized to different extent, but only a few are available through public strain collections. Here, the isolation of a close relative of one of the less-studied ASF strains, Clostridium species ASF 502, from faeces of C57BL/6J mice is reported. Isolate TLL-A1T shares 99.5 % 16S rRNA gene sequence identity with Clostridium species ASF 502 and phylogenetic analyses indicate that both strains belong to the uncultured so-called 'Lachnospiraceae UCG 006' clade. The rare sugar d-arabinose was used as a sole carbon source in the anaerobic isolation medium. Results of growth experiments with TLL-A1T on different carbon sources and analysis of its ~6.5 Gb indicate that TLL-A1T harbours a large gene repertoire that enables it to utilize a variety of carbohydrates for growth. Comparative genome analyses of TLL-A1T and Clostridium species ASF 502 reveal differences in genome content between the two strains, in particular with regards to carbohydrate-activating enzymes. Based on genomic, molecular and phenotypic differences, we propose to classify strain TLL-A1T (DSM 106076T=KCTC 15657T) as a representative of a new genus and a new species, for which we propose the name Schaedlerella arabinosiphila gen. nov., sp. nov.


Asunto(s)
Arabinosa/metabolismo , Clostridiales/clasificación , Heces/microbiología , Ratones Endogámicos C57BL/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ratones , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
Microbiol Resour Announc ; 8(30)2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31346018

RESUMEN

Here, the complete genome sequence of Duncaniella muris strain B8 is presented. The anaerobic strain was isolated from the feces of C57/BL6 mice and is closely related to D. muris strain DSM 103720, which is the type strain of the recently proposed genus Duncaniella of the Muribaculaceae.

16.
Archaea ; 2018: 7609847, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30210264

RESUMEN

Methanobrevibacter and Methanosphaera species represent some of the most prevalent methanogenic archaea in the gastrointestinal tract of animals and humans and play an important role in this environment. The aim of this study was to identify genomic features that are shared or specific for members of each genus with a special emphasis of the analysis on the assimilation of nitrogen and acetate and the utilization of methanol and ethanol for methanogenesis. Here, draft genome sequences of Methanobrevibacter thaueri strain DSM 11995T, Methanobrevibacter woesei strain DSM 11979T, and Methanosphaera cuniculi strain 4103T are reported and compared to those of 16 other Methanobrevibacter and Methanosphaera genomes, including genomes of the 13 currently available types of strains of the two genera. The comparative genome analyses indicate that among other genes, the absence of molybdopterin cofactor biosynthesis is conserved in Methanosphaera species but reveals also that the three species share a core set of more than 300 genes that distinguishes the genus Methanosphaera from the genus Methanobrevibacter. Multilocus sequence analysis shows that the genus Methanobrevibacter can be subdivided into clades, potentially new genera, which may display characteristic specific metabolic features. These features include not only the potential ability of nitrogen fixation and acetate assimilation in a clade comprised of Methanobrevibacter species from the termite gut and Methanobrevibacter arboriphilus strains but also the potential capability to utilize ethanol and methanol in a clade comprising Methanobrevibacter wolinii strain DSM 11976T, Mbb. sp. AbM4, and Mbb. boviskoreani strain DSM 25824T.


Asunto(s)
Genómica , Redes y Vías Metabólicas/genética , Metano/metabolismo , Methanobacteriaceae/clasificación , Methanobacteriaceae/genética , Acetatos/metabolismo , Etanol/metabolismo , Methanobacteriaceae/metabolismo , Metanol/metabolismo , Nitrógeno/metabolismo
17.
Archaea ; 2017: 4097425, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28634433

RESUMEN

Methanobrevibacter arboriphilus strain DH1 is an autotrophic methanogen that was isolated from the wetwood of methane-emitting trees. This species has been of considerable interest for its unusual oxygen tolerance and has been studied as a model organism for more than four decades. Strain DH1 is closely related to other host-associated Methanobrevibacter species from intestinal tracts of animals and the rumen, making this strain an interesting candidate for comparative analysis to identify factors important for colonizing intestinal environments. Here, the genome sequence of M. arboriphilus strain DH1 is reported. The draft genome is composed of 2.445.031 bp with an average GC content of 25.44% and predicted to harbour 1964 protein-encoding genes. Among the predicted genes, there are also more than 50 putative genes for the so-called adhesin-like proteins (ALPs). The presence of ALP-encoding genes in the genome of this non-host-associated methanogen strongly suggests that target surfaces for ALPs other than host tissues also need to be considered as potential interaction partners. The high abundance of ALPs may also indicate that these types of proteins are more characteristic for specific phylogenetic groups of methanogens rather than being indicative for a particular environment the methanogens thrives in.


Asunto(s)
Genoma Arqueal , Methanobrevibacter/genética , Filogenia , Madera/microbiología , Metano
18.
Genome Announc ; 4(3)2016 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-27340077

RESUMEN

Here, the draft genome sequences of four different Methanobrevibacter species are presented. Three of the Methanobrevibacter species (M. curvatus, M. cuticularis, and M. filiformis) have been isolated from the termite hindgut, while M. oralis was isolated from human subgingival plaque.

19.
Microbiology (Reading) ; 162(3): 459-465, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26813792

RESUMEN

Only limited information is available on the roles of different rumen ciliate community types, first described by Eadie in 1962, in enteric methane (CH4) formation by their ruminant hosts. If the different types were differentially associated with CH4 formation, then ciliate community typing could be used to identify naturally high and low CH4-emitting animals. Here we measured the CH4 yields [g CH4 (kg feed dry matter intake, DMI)(-1)] of 118 sheep fed a standard pelleted lucerne diet at two different times, at least 2 weeks apart. There were significant differences (P < 2.2 × 10(-16), Wilcoxon rank sum test) in the CH4 yields (± sd) from sheep selected as high [16.7 ± 1.5 g CH4 (kg DMI)(-1)] and low emitters [13.3 ± 1.5 g CH4 (kg DMI)(-1)]. A rumen sample was collected after each of the two measurements, and ciliate composition was analysed using barcoded 454 Titanium pyrosequencing of 18S rRNA genes. The genera found, in order of mean relative abundance, were Epidinium, Entodinium, Dasytricha, Eudiplodinium, Polyplastron, Isotricha and Anoplodinium-Diplodinium, none of which was significantly correlated with the CH4 emissions ranking associated with the rumen sample. Ciliate communities naturally assembled into four types (A, AB, B and O), characterized by the presence and absence of key genera. There was no difference in CH4 yield between sheep that harboured different ciliate community types, suggesting that these did not underlie the natural variation in CH4 yields. Further research is needed to unravel the nature of interactions between ciliate protozoa and other rumen micro-organisms, which may ultimately lead to contrasting CH4 emission phenotypes.


Asunto(s)
Biota , Cilióforos/clasificación , Cilióforos/metabolismo , Dieta/métodos , Medicago sativa/metabolismo , Metano/metabolismo , Rumen/parasitología , Alimentación Animal , Animales , Cilióforos/genética , Cilióforos/aislamiento & purificación , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN , Ovinos
20.
J Biol Chem ; 290(20): 12630-49, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25795776

RESUMEN

The adaptive immune response to the human gut microbiota consists of a complex repertoire of antibodies interacting with a broad range of taxa. Fusing intestinal lamina propria lymphocytes from mice monocolonized with Bacteroides thetaiotaomicron to a myeloma fusion partner allowed us to recover hybridomas that captured naturally primed, antigen-specific antibody responses representing multiple isotypes, including IgA. One of these hybridomas, 260.8, produced a monoclonal antibody that recognizes an epitope specific for B. thetaiotaomicron isolates in a large panel of hospital- and community-acquired Bacteroides. Whole genome transposon mutagenesis revealed a 19-gene locus, involved in LPS O-antigen polysaccharide synthesis and conserved among multiple B. thetaiotaomicron isolates, that is required for 260.8 epitope expression. Mutants in this locus exhibited marked fitness defects in vitro during growth in rich medium and in gnotobiotic mice colonized with defined communities of human gut symbionts. Expression of the 260.8 epitope was sustained during 10 months of daily passage in vitro and during 14 months of monocolonization of gnotobiotic wild-type, Rag1-/-, or Myd88-/- mice. Comparison of gnotobiotic Rag1-/- mice with and without subcutaneous 260.8 hybridomas disclosed that this IgA did not affect B. thetaiotaomicron population density or suppress 260.8 epitope production but did affect bacterial gene expression in ways emblematic of a diminished host innate immune response. Our study illustrates an approach for (i) generating diagnostic antibodies, (ii) characterizing IgA responses along a continuum of specificity/degeneracy that defines the IgA repertoire to gut symbionts, and (iii) identifying immunogenic epitopes that affect competitiveness and help maintain host-microbe mutualism.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Bacteroides/inmunología , Epítopos/inmunología , Inmunoglobulina A/inmunología , Mucosa Intestinal/inmunología , Animales , Anticuerpos Antibacterianos/genética , Bacteroides/genética , Elementos Transponibles de ADN , Epítopos/genética , Sitios Genéticos/inmunología , Humanos , Mucosa Intestinal/microbiología , Ratones , Ratones Noqueados , Mutagénesis , Mutación , Antígenos O/genética , Antígenos O/inmunología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...