Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 253: 112484, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38219407

RESUMEN

The light-driven reduction of dinitrogen (N2) to ammonia (NH3) catalyzed by a cadmium sulfide (CdS) nanocrystal­nitrogenase MoFe protein biohybrid is dependent on a range of different factors, including an appropriate hole-scavenging sacrificial electron donor (SED). Here, the impact of different SEDs on the overall rate of N2 reduction catalyzed by a CdS quantum dot (QD)-MoFe protein system was determined. The selection of SED was guided by several goals: (i) molecules with standard reduction potentials sufficient to reduce the oxidized CdS QD, (ii) molecules that do not absorb the excitation wavelength of the CdS QD, and (iii) molecules that could be readily reduced by sustainable processes. Earlier studies utilized buffer molecules or ascorbic acid as the SED. The effectiveness of ascorbic acid as SED was compared to dithionite (DT), triethanolamine (TEOA), and hydroquinone (HQ) across a range of concentrations in supporting N2 reduction to NH3 in a CdS QD-MoFe protein photocatalytic system. It was found that TEOA supported N2 reduction rates comparable to those observed for dithionite and ascorbic acid. HQ was found to support significantly higher rates of N2 reduction compared to the other SEDs at a concentration of 50 mM. A comparison of the rates of N2 reduction by the biohybrid complex to the standard reduction potential (Eo) of the SEDs reveals that Eo is not the only factor impacting the efficiency of hole-scavenging. These findings reveal the importance of the SED properties for improving the efficiency of hole-scavenging in the light-driven N2 reduction reaction catalyzed by a CdS QD-MoFe protein hybrid.


Asunto(s)
Azotobacter vinelandii , Compuestos de Cadmio , Nitrogenasa , Sulfuros , Nitrogenasa/metabolismo , Molibdoferredoxina/metabolismo , Oxidación-Reducción , Ditionita/metabolismo , Catálisis , Ácido Ascórbico/metabolismo , Azotobacter vinelandii/metabolismo
2.
J Chem Phys ; 159(23)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38117020

RESUMEN

The biological reduction of N2 to ammonia requires the ATP-dependent, sequential delivery of electrons from the Fe protein to the MoFe protein of nitrogenase. It has been demonstrated that CdS nanocrystals can replace the Fe protein to deliver photoexcited electrons to the MoFe protein. Herein, light-activated electron delivery within the CdS:MoFe protein complex was achieved in the frozen state, revealing that all the electron paramagnetic resonance (EPR) active E-state intermediates in the catalytic cycle can be trapped and characterized by EPR spectroscopy. Prior to illumination, the CdS:MoFe protein complex EPR spectrum was composed of a S = 3/2 rhombic signal (g = 4.33, 3.63, and 2.01) consistent with the FeMo-cofactor in the resting state, E0. Illumination for sequential 1-h periods at 233 K under 1 atm of N2 led to a cumulative attenuation of E0 by 75%. This coincided with the appearance of S = 3/2 and S = 1/2 signals assigned to two-electron (E2) and four-electron (E4) reduced states of the FeMo-cofactor, together with additional S = 1/2 signals consistent with the formation of E6 and E8 states. Simulations of EPR spectra allowed quantification of the different E-state populations, along with mapping of these populations onto the Lowe-Thorneley kinetic scheme. The outcome of this work demonstrates that the photochemical delivery of electrons to the MoFe protein can be used to populate all of the EPR active E-state intermediates of the nitrogenase MoFe protein cycle.


Asunto(s)
Azotobacter vinelandii , Puntos Cuánticos , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Temperatura , Oxidación-Reducción , Nitrogenasa/química , Nitrogenasa/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Azotobacter vinelandii/metabolismo
3.
Commun Chem ; 6(1): 254, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980448

RESUMEN

The reduction of dinitrogen to ammonia catalyzed by nitrogenase involves a complex series of events, including ATP hydrolysis, electron transfer, and activation of metal clusters for N2 reduction. Early evidence shows that an essential part of the mechanism involves transducing information between the nitrogenase component proteins through conformational dynamics. Here, millisecond time-resolved hydrogen-deuterium exchange mass spectrometry was used to unravel peptide-level protein motion on the time scale of catalysis of Mo-dependent nitrogenase from Azotobacter vinelandii. Normal mode analysis calculations complemented this data, providing insights into the specific signal transduction pathways that relay information across protein interfaces at distances spanning 100 Å. Together, these results show that conformational changes induced by protein docking are rapidly transduced to the active site, suggesting a specific mechanism for activating the metal cofactor in the enzyme active site.

4.
Nano Lett ; 23(22): 10466-10472, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37930772

RESUMEN

Nitrogenase MoFe protein can be coupled with CdS nanocrystals (NCs) to enable photocatalytic N2 reduction. The nature of interactions that support complex formation is of paramount importance in intermolecular electron transfer that supports catalysis. In this work we have employed microscale thermophoresis to examine binding interactions between 3-mercaptopropionate capped CdS quantum dots (QDs) and MoFe protein over a range of QD diameters (3.4-4.3 nm). The results indicate that the interactions are largely electrostatic, with the strength of interactions similar to that observed for the physiological electron donor. In addition, the strength of interactions is sensitive to the QD diameter, and the binding interactions are significantly stronger for QDs with smaller diameters. The ability to quantitatively assess NC protein interactions in biohybrid systems supports strategies for understanding properties and reaction parameters that are important for obtaining optimal rates of catalysis in biohybrid systems.


Asunto(s)
Molibdoferredoxina , Puntos Cuánticos , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Electricidad Estática , Nitrogenasa/química , Nitrogenasa/metabolismo , Transporte de Electrón
5.
J Am Chem Soc ; 145(39): 21165-21169, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37729189

RESUMEN

A critical step in the mechanism of N2 reduction to 2NH3 catalyzed by the enzyme nitrogenase is the reaction of the four-electron/four-proton reduced intermediate state of the active-site FeMo-cofactor (E4(4H)). This state is a junction in the catalytic mechanism, either relaxing by the reaction of a metal bound Fe-hydride with a proton forming H2 or going forward with N2 binding coupled to the reductive elimination (re) of two Fe-hydrides as H2 to form the E4(2N2H) state. E4(2N2H) can relax to E4(4H) by the oxidative addition (oa) of H2 and release of N2 or can be further reduced in a series of catalytic steps to release 2NH3. If the H2 re/oa mechanism is correct, it requires that oa of H2 be associative with E4(2N2H). In this report, we have taken advantage of CdS quantum dots in complex with MoFe protein to achieve photodriven electron delivery in the frozen state, with cryo-annealing in the dark, to reveal details of the E-state species and to test the stability of E4(2N2H). Illumination of frozen CdS:MoFe protein complexes led to formation of a population of reduced intermediates. Electron paramagnetic resonance spectroscopy identified E-state signals including E2 and E4(2N2H), as well as signals suggesting the formation of E6 or E8. It is shown that in the frozen state when pN2 is much greater than pH2, the E4(2N2H) state is kinetically stable, with very limited forward or reverse reaction rates. These results establish that the oa of H2 to the E4(2N2H) state follows an associative reaction mechanism.

7.
Faraday Discuss ; 243(0): 270-286, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37060162

RESUMEN

Nitrogenases catalyse the 6-electron reduction of dinitrogen to ammonia, passing through a series of redox and protonation levels during catalytic substrate reduction. The molybdenum-iron nitrogenase is the most well-studied, but redox potentials associated with proton-coupled transformations between the redox levels of the catalytic MoFe protein have proved difficult to pin down, in part due to a complex electron-transfer pathway from the partner Fe protein, linked to ATP-hydrolysis. Here, we apply electrochemical control to the MoFe protein of Azotobacter vinelandii nitrogenase, using europium(III/II)-ligand couples as low potential redox mediators. We combine insight from the electrochemical current response with data from gas chromatography and in situ infrared spectroscopy, in order to define potentials for the binding of a series of inhibitors (carbon monoxide, methyl isocyanide) to the metallo-catalytic site of the MoFe protein, and the onset of catalytic transformation of alternative substrates (protons and acetylene) by the enzyme. Thus, we associate potentials with the redox levels for inhibition and catalysis by nitrogenase, with relevance to the elusive mechanism of biological nitrogen fixation.


Asunto(s)
Molibdoferredoxina , Nitrogenasa , Nitrogenasa/química , Nitrogenasa/metabolismo , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Oxidación-Reducción , Proteínas/metabolismo , Fijación del Nitrógeno
8.
Faraday Discuss ; 243(0): 231-252, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37021412

RESUMEN

Study of α-V70I-substituted nitrogenase MoFe protein identified Fe6 of FeMo-cofactor (Fe7S9MoC-homocitrate) as a critical N2 binding/reduction site. Freeze-trapping this enzyme during Ar turnover captured the key catalytic intermediate in high occupancy, denoted E4(4H), which has accumulated 4[e-/H+] as two bridging hydrides, Fe2-H-Fe6 and Fe3-H-Fe7, and protons bound to two sulfurs. E4(4H) is poised to bind/reduce N2 as driven by mechanistically-coupled H2 reductive-elimination of the hydrides. This process must compete with ongoing hydride protonation (HP), which releases H2 as the enzyme relaxes to state E2(2H), containing 2[e-/H+] as a hydride and sulfur-bound proton; accumulation of E4(4H) in α-V70I is enhanced by HP suppression. EPR and 95Mo ENDOR spectroscopies now show that resting-state α-V70I enzyme exists in two conformational states, both in solution and as crystallized, one with wild type (WT)-like FeMo-co and one with perturbed FeMo-co. These reflect two conformations of the Ile residue, as visualized in a reanalysis of the X-ray diffraction data of α-V70I and confirmed by computations. EPR measurements show delivery of 2[e-/H+] to the E0 state of the WT MoFe protein and to both α-V70I conformations generating E2(2H) that contains the Fe3-H-Fe7 bridging hydride; accumulation of another 2[e-/H+] generates E4(4H) with Fe2-H-Fe6 as the second hydride. E4(4H) in WT enzyme and a minority α-V70I E4(4H) conformation as visualized by QM/MM computations relax to resting-state through two HP steps that reverse the formation process: HP of Fe2-H-Fe6 followed by slower HP of Fe3-H-Fe7, which leads to transient accumulation of E2(2H) containing Fe3-H-Fe7. In the dominant α-V70I E4(4H) conformation, HP of Fe2-H-Fe6 is passively suppressed by the positioning of the Ile sidechain; slow HP of Fe3-H-Fe7 occurs first and the resulting E2(2H) contains Fe2-H-Fe6. It is this HP suppression in E4(4H) that enables α-V70I MoFe to accumulate E4(4H) in high occupancy. In addition, HP suppression in α-V70I E4(4H) kinetically unmasks hydride reductive-elimination without N2-binding, a process that is precluded in WT enzyme.


Asunto(s)
Molibdoferredoxina , Nitrogenasa , Nitrogenasa/química , Nitrogenasa/metabolismo , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Sustitución de Aminoácidos , Oxidación-Reducción , Conformación Molecular , Aminoácidos , Protones
9.
J Am Chem Soc ; 145(10): 5637-5644, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857604

RESUMEN

A central feature of the current understanding of dinitrogen (N2) reduction by the enzyme nitrogenase is the proposed coupling of the hydrolysis of two ATP, forming two ADP and two Pi, to the transfer of one electron from the Fe protein component to the MoFe protein component, where substrates are reduced. A redox-active [4Fe-4S] cluster associated with the Fe protein is the agent of electron delivery, and it is well known to have a capacity to cycle between a one-electron-reduced [4Fe-4S]1+ state and an oxidized [4Fe-4S]2+ state. Recently, however, it has been shown that certain reducing agents can be used to further reduce the Fe protein [4Fe-4S] cluster to a super-reduced, all-ferrous [4Fe-4S]0 state that can be either diamagnetic (S = 0) or paramagnetic (S = 4). It has been proposed that the super-reduced state might fundamentally alter the existing model for nitrogenase energy utilization by the transfer of two electrons per Fe protein cycle linked to hydrolysis of only two ATP molecules. Here, we measure the number of ATP consumed for each electron transfer under steady-state catalysis while the Fe protein cluster is in the [4Fe-4S]1+ state and when it is in the [4Fe-4S]0 state. Both oxidation states of the Fe protein are found to operate by hydrolyzing two ATP for each single-electron transfer event. Thus, regardless of its initial redox state, the Fe protein transfers only one electron at a time to the MoFe protein in a process that requires the hydrolysis of two ATP.


Asunto(s)
Molibdoferredoxina , Nitrogenasa , Nitrogenasa/química , Molibdoferredoxina/química , Electrones , Hidrólisis , Adenosina Trifosfato/química , Oxidación-Reducción , Hierro/metabolismo , Catálisis , Espectroscopía de Resonancia por Spin del Electrón
10.
Elife ; 122023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36799917

RESUMEN

The planetary biosphere is powered by a suite of key metabolic innovations that emerged early in the history of life. However, it is unknown whether life has always followed the same set of strategies for performing these critical tasks. Today, microbes access atmospheric sources of bioessential nitrogen through the activities of just one family of enzymes, nitrogenases. Here, we show that the only dinitrogen reduction mechanism known to date is an ancient feature conserved from nitrogenase ancestors. We designed a paleomolecular engineering approach wherein ancestral nitrogenase genes were phylogenetically reconstructed and inserted into the genome of the diazotrophic bacterial model, Azotobacter vinelandii, enabling an integrated assessment of both in vivo functionality and purified nitrogenase biochemistry. Nitrogenase ancestors are active and robust to variable incorporation of one or more ancestral protein subunits. Further, we find that all ancestors exhibit the reversible enzymatic mechanism for dinitrogen reduction, specifically evidenced by hydrogen inhibition, which is also exhibited by extant A. vinelandii nitrogenase isozymes. Our results suggest that life may have been constrained in its sampling of protein sequence space to catalyze one of the most energetically challenging biochemical reactions in nature. The experimental framework established here is essential for probing how nitrogenase functionality has been shaped within a dynamic, cellular context to sustain a globally consequential metabolism.


Asunto(s)
Azotobacter vinelandii , Nitrogenasa , Nitrogenasa/química , Nitrogenasa/genética , Nitrogenasa/metabolismo , Fijación del Nitrógeno , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Secuencia de Aminoácidos , Nitrógeno/metabolismo
11.
Biochemistry ; 61(19): 2131-2137, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36103672

RESUMEN

Mo-nitrogenase catalyzes the challenging N2-to-NH3 reduction. This complex reaction proceeds through a series of intermediate states (En) of its active site FeMo-cofactor. An understanding of the kinetics of the conversion between En states is central to defining the mechanism of nitrogenase. Here, rate constants of key steps have been determined through a steady-state kinetic model with fits to experimental data. The model reveals that the rate for H2 formation from the early electron populated state E2(2H) is much slower than that from the more reduced E4(4H) state. Further, it is found that the competing reactions of H2 formation and N2 binding at the E4(4H) state occur with equal rate constants. The H2-dependent reverse reaction of the N2 binding step is found to have a rate constant of 5.5 ± 0.2 (atm H2)-1 s-1 (7.2 ± 0.3 (mM H2)-1 s-1). Importantly, the reduction of N2 bound to FeMo-cofactor proceeds with a rate constant of 1 ± 0.1 s-1, revealing a previously unrecognized slow step in the Mo-nitrogenase catalytic cycle associated with the chemical transformation of N2 to 2 NH3. Finally, the populations of En states under different reaction conditions are predicted, providing a powerful tool to guide the spectroscopic and mechanistic studies of Mo-nitrogenase.


Asunto(s)
Molibdoferredoxina , Nitrogenasa , Catálisis , Cinética , Molibdoferredoxina/metabolismo , Nitrogenasa/química , Oxidación-Reducción
12.
J Am Chem Soc ; 144(40): 18315-18328, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36166637

RESUMEN

Substrates and inhibitors of Mo-dependent nitrogenase bind and react at Fe ions of the active-site FeMo-cofactor [7Fe-9S-C-Mo-homocitrate] contained within the MoFe protein α-subunit. The cofactor contains a CFe6 core, a carbon centered within a trigonal prism of six Fe, whose role in catalysis is unknown. Targeted 13C labeling of the carbon enables electron-nuclear double resonance (ENDOR) spectroscopy to sensitively monitor the electronic properties of the Fe-C bonds and the spin-coupling scheme adopted by the FeMo-cofactor metal ions. This report compares 13CFe6 ENDOR measurements for (i) the wild-type protein resting state (E0; α-Val70) to those of (ii) α-Ile70, (iii) α-Ala70-substituted proteins; (iv) crystallographically characterized CO-inhibited "hi-CO" state; (v) E4(4H) Janus intermediate, activated for N2 binding/reduction by accumulation of 4[e-/H+]; (vi) E4(2H)* state containing a doubly reduced FeMo-cofactor without Fe-bound substrates; and (vii) propargyl alcohol reduction intermediate having allyl alcohol bound as a ferracycle to FeMo-cofactor Fe6. All states examined, both S = 1/2 and 3/2 exhibited near-zero 13C isotropic hyperfine coupling constants, Ca = [-1.3 ↔ +2.7] MHz. Density functional theory computations and natural bond orbital analysis of the Fe-C bonds show that this occurs because a (3 spin-up/3 spin-down) spin-exchange configuration of CFe6 Fe-ion spins produces cancellation of large spin-transfers to carbon in each Fe-C bond. Previous X-ray diffraction and DFT both indicate that trigonal-prismatic geometry around carbon is maintained with high precision in all these states. The persistent structure and Fe-C bonding of the CFe6 core indicate that it does not provide a functionally dynamic (hemilabile) "beating heart"─instead it acts as "a heart of steel", stabilizing the structure of the FeMo-cofactor-active site during nitrogenase catalysis.


Asunto(s)
Molibdoferredoxina , Nitrogenasa , Carbono/metabolismo , Catálisis , Espectroscopía de Resonancia por Spin del Electrón/métodos , Molibdoferredoxina/química , Nitrogenasa/química , Oxidación-Reducción , Acero
13.
Sci Rep ; 12(1): 10367, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725884

RESUMEN

Biological nitrogen fixation (BNF) is the reduction of N2 into NH3 in a group of prokaryotes by an extremely O2-sensitive protein complex called nitrogenase. Transfer of the BNF pathway directly into plants, rather than by association with microorganisms, could generate crops that are less dependent on synthetic nitrogen fertilizers and increase agricultural productivity and sustainability. In the laboratory, nitrogenase activity is commonly determined by measuring ethylene produced from the nitrogenase-dependent reduction of acetylene (ARA) using a gas chromatograph. The ARA is not well suited for analysis of large sample sets nor easily adapted to automated robotic determination of nitrogenase activities. Here, we show that a reduced sulfonated viologen derivative (S2Vred) assay can replace the ARA for simultaneous analysis of isolated nitrogenase proteins using a microplate reader. We used the S2Vred to screen a library of NifH nitrogenase components targeted to mitochondria in yeast. Two NifH proteins presented properties of great interest for engineering of nitrogen fixation in plants, namely NifM independency, to reduce the number of genes to be transferred to the eukaryotic host; and O2 resistance, to expand the half-life of NifH iron-sulfur cluster in a eukaryotic cell. This study established that NifH from Dehalococcoides ethenogenes did not require NifM for solubility, [Fe-S] cluster occupancy or functionality, and that NifH from Geobacter sulfurreducens was more resistant to O2 exposure than the other NifH proteins tested. It demonstrates that nitrogenase components with specific biochemical properties such as a wider range of O2 tolerance exist in Nature, and that their identification should be an area of focus for the engineering of nitrogen-fixing crops.


Asunto(s)
Fijación del Nitrógeno , Nitrogenasa , Colorimetría , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Nitrogenasa/metabolismo , Saccharomyces cerevisiae/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(26): e2122364119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35727971

RESUMEN

Solar-driven bioelectrosynthesis represents a promising approach for converting abundant resources into value-added chemicals with renewable energy. Microorganisms powered by electrochemical reducing equivalents assimilate CO2, H2O, and N2 building blocks. However, products from autotrophic whole-cell biocatalysts are limited. Furthermore, biocatalysts tasked with N2 reduction are constrained by simultaneous energy-intensive autotrophy. To overcome these challenges, we designed a biohybrid coculture for tandem and tunable CO2 and N2 fixation to value-added products, allowing the different species to distribute bioconversion steps and reduce the individual metabolic burden. This consortium involves acetogen Sporomusa ovata, which reduces CO2 to acetate, and diazotrophic Rhodopseudomonas palustris, which uses the acetate both to fuel N2 fixation and for the generation of a biopolyester. We demonstrate that the coculture platform provides a robust ecosystem for continuous CO2 and N2 fixation, and its outputs are directed by substrate gas composition. Moreover, we show the ability to support the coculture on a high-surface area silicon nanowire cathodic platform. The biohybrid coculture achieved peak faradaic efficiencies of 100, 19.1, and 6.3% for acetate, nitrogen in biomass, and ammonia, respectively, while maintaining product tunability. Finally, we established full solar to chemical conversion driven by a photovoltaic device, resulting in solar to chemical efficiencies of 1.78, 0.51, and 0.08% for acetate, nitrogenous biomass, and ammonia, correspondingly. Ultimately, our work demonstrates the ability to employ and electrochemically manipulate bacterial communities on demand to expand the suite of CO2 and N2 bioelectrosynthesis products.


Asunto(s)
Dióxido de Carbono , Firmicutes , Fijación del Nitrógeno , Fotosíntesis , Rhodopseudomonas , Acetatos/metabolismo , Amoníaco , Dióxido de Carbono/metabolismo , Técnicas de Cocultivo , Ecosistema , Firmicutes/crecimiento & desarrollo , Firmicutes/metabolismo , Nitrógeno/metabolismo , Rhodopseudomonas/crecimiento & desarrollo , Rhodopseudomonas/metabolismo
15.
Chem Sci ; 13(12): 3489-3500, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35432878

RESUMEN

Reduction of dinitrogen by molybdenum nitrogenase relies on complex metalloclusters: the [8Fe:7S] P-cluster and the [7Fe:9S:Mo:C:homocitrate] FeMo-cofactor. Although both clusters bear topological similarities and require the reductive fusion of [4Fe:4S] sub-clusters to achieve their respective assemblies, P-clusters are assembled directly on the NifD2K2 polypeptide prior to the insertion of FeMo-co, which is fully assembled separately from NifD2K2. P-cluster maturation involves the iron protein NifH2 as well as several accessory proteins, whose role has not been elucidated. In the present work, two NifD2K2 species bearing immature P-clusters were isolated from an Azotobacter vinelandii strain in which the genes encoding NifH and the accessory protein NifZ were deleted, and characterized by X-ray absorption spectroscopy and EPR. These analyses showed that both NifD2K2 complexes harbor clusters that are electronically and structurally similar, with each NifDK unit containing two [4Fe:4S]2+/+ clusters. Binding of the accessory protein NifW parallels a decrease in the distance between these clusters, as well as a subtle change in their coordination. These results support a conformational role for NifW in P-cluster biosynthesis, bringing the two [4Fe:4S] precursors closer prior to their fusion, which may be crucial in challenging cellular contexts.

16.
Inorg Chem ; 61(14): 5459-5464, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35357830

RESUMEN

The nitrogenase active-site cofactor must accumulate 4e-/4H+ (E4(4H) state) before N2 can bind and be reduced. Earlier studies demonstrated that this E4(4H) state stores the reducing-equivalents as two hydrides, with the cofactor metal-ion core formally at its resting-state redox level. This led to the understanding that N2 binding is mechanistically coupled to reductive-elimination of the two hydrides that produce H2. The state having acquired 2e-/2H+ (E2(2H)) correspondingly contains one hydride with a resting-state core redox level. How the cofactor accommodates addition of the first e-/H+ (E1(H) state) is unknown. The Fe-nitrogenase FeFe-cofactor was used to address this question because it is EPR-active in the E1(H) state, unlike the FeMo-cofactor of Mo-nitrogenase, thus allowing characterization by EPR spectroscopy. The freeze-trapped E1(H) state of Fe-nitrogenase shows an S = 1/2 EPR spectrum with g = [1.965, 1.928, 1.779]. This state is photoactive, and under 12 K cryogenic intracavity, 450 nm photolysis converts to a new and likewise photoactive S = 1/2 state (denoted E1(H)*) with g = [2.009, 1.950, 1.860], which results in a photostationary state, with E1(H)* relaxing to E1(H) at temperatures above 145 K. An H/D kinetic isotope effect of 2.4 accompanies the 12 K E1(H)/E1(H)* photointerconversion. These observations indicate that the addition of the first e-/H+ to the FeFe-cofactor of Fe-nitrogenase produces an Fe-bound hydride, not a sulfur-bound proton. As a result, the cluster metal-ion core is formally one-electron oxidized relative to the resting state. It is proposed that this behavior applies to all three nitrogenase isozymes.


Asunto(s)
Electrones , Nitrogenasa , Espectroscopía de Resonancia por Spin del Electrón , Hidrógeno/química , Metales/metabolismo , Molibdoferredoxina/metabolismo , Nitrogenasa/química , Oxidación-Reducción
17.
J Am Chem Soc ; 144(13): 5708-5712, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35315658

RESUMEN

The [8Fe-7S] P-cluster of nitrogenase MoFe protein mediates electron transfer from nitrogenase Fe protein during the catalytic production of ammonia. The P-cluster transitions between three oxidation states, PN, P+, P2+ of which PN↔P+ is critical to electron exchange in the nitrogenase complex during turnover. To dissect the steps in formation of P+ during electron transfer, photochemical reduction of MoFe protein at 231-263 K was used to trap formation of P+ intermediates for analysis by EPR. In complexes with CdS nanocrystals, illumination of MoFe protein led to reduction of the P-cluster P2+ that was coincident with formation of three distinct EPR signals: S = 1/2 axial and rhombic signals, and a high-spin S = 7/2 signal. Under dark annealing the axial and high-spin signal intensities declined, which coincided with an increase in the rhombic signal intensity. A fit of the time-dependent changes of the axial and high-spin signals to a reaction model demonstrates they are intermediates in the formation of the P-cluster P+ resting state and defines how spin-state transitions are coupled to changes in P-cluster oxidation state in MoFe protein during electron transfer.


Asunto(s)
Azotobacter vinelandii , Molibdoferredoxina , Azotobacter vinelandii/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Electrónica , Molibdoferredoxina/química , Nitrogenasa/química , Oxidación-Reducción
18.
Mol Microbiol ; 117(5): 1080-1088, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35220629

RESUMEN

Azotobacter vinelandii produces three genetically distinct, but structurally and mechanistically similar nitrogenase isozymes designated as Mo-dependent, V-dependent, or Fe-only based on the heterometal contained within their associated active site cofactors. These catalytic cofactors, which provide the site for N2 binding and reduction, are, respectively, designated as FeMo-cofactor, FeV-cofactor, and FeFe-cofactor. Fe-only nitrogenase is a poor catalyst for N2 fixation, when compared to the Mo-dependent and V-dependent nitrogenases and is only produced when neither Mo nor V is available. Under conditions favoring the production of Fe-only nitrogenase a gene product designated AnfO preserves the fidelity of Fe-only nitrogenase by preventing the misincorporation of FeV-cofactor, which results in the accumulation of a hybrid enzyme that cannot reduce N2 . These results are interpreted to indicate that AnfO controls the fidelity of Fe-only nitrogenase maturation during the physiological transition from conditions that favor V-dependent nitrogenase utilization to Fe-only nitrogenase utilization to support diazotrophic growth.


Asunto(s)
Azotobacter vinelandii , Nitrogenasa , Azotobacter vinelandii/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Molibdoferredoxina/metabolismo , Nitrogenasa/genética , Nitrogenasa/metabolismo
19.
mBio ; 12(4): e0156821, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34281397

RESUMEN

The nitrogen-fixing microbe Azotobacter vinelandii has the ability to produce three genetically distinct, but mechanistically similar, components that catalyze nitrogen fixation. For two of these components, the Mo-dependent and V-dependent components, their corresponding metal-containing active site cofactors, designated FeMo-cofactor and FeV-cofactor, respectively, are preformed on separate molecular scaffolds designated NifEN and VnfEN, respectively. From prior studies, and the present work, it is now established that neither of these scaffolds can replace the other with respect to their in vivo cofactor assembly functions. Namely, a strain inactivated for NifEN cannot produce active Mo-dependent nitrogenase nor can a strain inactivated for VnfEN produce an active V-dependent nitrogenase. It is therefore proposed that metal specificities for FeMo-cofactor and FeV-cofactor formation are supplied by their respective assembly scaffolds. In the case of the third, Fe-only component, its associated active site cofactor, designated FeFe-cofactor, requires neither the NifEN nor VnfEN assembly scaffold for its formation. Furthermore, there are no other genes present in A. vinelandii that encode proteins having primary structure similarity to either NifEN or VnfEN. It is therefore concluded that FeFe-cofactor assembly is completed within its cognate catalytic protein partner without the aid of an intermediate assembly site. IMPORTANCE Biological nitrogen fixation is a complex process involving the nitrogenases. The biosynthesis of an active nitrogenase involves a large number of genes and the coordinated function of their products. Understanding the details of the assembly and activation of the different nitrogen fixation components, in particular the simplest one known so far, the Fe-only nitrogenase, would contribute to the goal of transferring the necessary genetic elements of bacterial nitrogen fixation to cereal crops to endow them with the capacity for self-fertilization. In this work, we show that there is no need for a scaffold complex for the assembly of the FeFe-cofactor, which provides the active site for Fe-only nitrogenase. These results are in agreement with previously reported genetic reconstruction experiments using a non-nitrogen-fixing microbe. In aggregate, these findings provide a high degree of confidence that the Fe-only system represents the simplest and, therefore, most attractive target for mobilizing nitrogen fixation into plants.


Asunto(s)
Azotobacter vinelandii/metabolismo , Dominio Catalítico , Coenzimas/metabolismo , Nitrogenasa/química , Azotobacter vinelandii/enzimología , Azotobacter vinelandii/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Coenzimas/genética , Molibdoferredoxina/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Nitrogenasa/metabolismo
20.
Chem Sci ; 12(20): 6913-6922, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-34123320

RESUMEN

The electronic structure of the active-site metal cofactor (FeV-cofactor) of resting-state V-dependent nitrogenase has been an open question, with earlier studies indicating that it exhibits a broad S = 3/2 EPR signal (Kramers state) having g values of ∼4.3 and 3.8, along with suggestions that it contains metal-ions with valencies [1V3+, 3Fe3+, 4Fe2+]. In the present work, genetic, biochemical, and spectroscopic approaches were combined to reveal that the EPR signals previously assigned to FeV-cofactor do not correlate with active VFe-protein, and thus cannot arise from the resting-state of catalytically relevant FeV-cofactor. It, instead, appears resting-state FeV-cofactor is either diamagnetic, S = 0, or non-Kramers, integer-spin (S = 1, 2 etc.). When VFe-protein is freeze-trapped during high-flux turnover with its natural electron-donating partner Fe protein, conditions which populate reduced states of the FeV-cofactor, a new rhombic S = 1/2 EPR signal from such a reduced state is observed, with g = [2.18, 2.12, 2.09] and showing well-defined 51V (I = 7/2) hyperfine splitting, a iso = 110 MHz. These findings indicate a different assignment for the electronic structure of the resting state of FeV-cofactor: S = 0 (or integer-spin non-Kramers state) with metal-ion valencies, [1V3+, 4Fe3+, 3Fe2+]. Our findings suggest that the V3+ does not change valency throughout the catalytic cycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...