Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Remote Sens Environ ; 266: 1-14, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36424983

RESUMEN

Lakes and other surface fresh waterbodies provide drinking water, recreational and economic opportunities, food, and other critical support for humans, aquatic life, and ecosystem health. Lakes are also productive ecosystems that provide habitats and influence global cycles. Chlorophyll concentration provides a common metric of water quality, and is frequently used as a proxy for lake trophic state. Here, we document the generation and distribution of the complete MEdium Resolution Imaging Spectrometer (MERIS; Appendix A provides a complete list of abbreviations) radiometric time series for over 2300 satellite resolvable inland bodies of water across the contiguous United States (CONUS) and more than 5,000 in Alaska. This contribution greatly increases the ease of use of satellite remote sensing data for inland water quality monitoring, as well as highlights new horizons in inland water remote sensing algorithm development. We evaluate the performance of satellite remote sensing Cyanobacteria Index (CI)-based chlorophyll algorithms, the retrievals for which provide surrogate estimates of phytoplankton concentrations in cyanobacteria dominated lakes. Our analysis quantifies the algorithms' abilities to assess lake trophic state across the CONUS. As a case study, we apply a bootstrapping approach to derive a new CI-to-chlorophyll relationship, ChlBS, which performs relatively well with a multiplicative bias of 1.11 (11%) and mean absolute error of 1.60 (60%). While the primary contribution of this work is the distribution of the MERIS radiometric timeseries, we provide this case study as a roadmap for future stakeholders' algorithm development activities, as well as a tool to assess the strengths and weaknesses of applying a single algorithm across CONUS.

2.
Harmful Algae ; 79: 87-104, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30420020

RESUMEN

Blooms of the marine diatom genus Pseudo-nitzschia that produce the neurotoxin domoic acid have been documented with regularity along the coast of southern California since 2003, with the occurrence of the toxin in shellfish tissue predating information on domoic acid in the particulate fraction in this region. Domoic acid concentrations in the phytoplankton inhabiting waters off southern California during 2003, 2006, 2007, 2011 and 2017 were comparable to some of the highest values that have been recorded in the literature. Blooms of Pseudo-nitzschia have exhibited strong seasonality, with toxin appearing predominantly in the spring. Year-to-year variability of particulate toxin has been considerable, and observations during 2003, 2006, 2007, 2011 and again in 2017 linked domoic acid in the diets of marine mammals and seabirds to mass mortality events among these animals. This work reviews information collected during the past 15 years documenting the phenology and magnitude of Pseudo-nitzschia abundances and domoic acid within the Southern California Bight. The general oceanographic factors leading to blooms of Pseudo-nitzschia and outbreaks of domoic acid in this region are clear, but subtle factors controlling spatial and interannual variability in bloom magnitude and toxin production remain elusive.


Asunto(s)
Diatomeas/metabolismo , Floraciones de Algas Nocivas , Ácido Kaínico/análogos & derivados , California , Ácido Kaínico/metabolismo , Fitoplancton , Estaciones del Año , Agua de Mar , Mariscos
3.
Opt Express ; 26(6): 7404-7422, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29609296

RESUMEN

Performance assessment of ocean color satellite data has generally relied on statistical metrics chosen for their common usage and the rationale for selecting certain metrics is infrequently explained. Commonly reported statistics based on mean squared errors, such as the coefficient of determination (r2), root mean square error, and regression slopes, are most appropriate for Gaussian distributions without outliers and, therefore, are often not ideal for ocean color algorithm performance assessment, which is often limited by sample availability. In contrast, metrics based on simple deviations, such as bias and mean absolute error, as well as pair-wise comparisons, often provide more robust and straightforward quantities for evaluating ocean color algorithms with non-Gaussian distributions and outliers. This study uses a SeaWiFS chlorophyll-a validation data set to demonstrate a framework for satellite data product assessment and recommends a multi-metric and user-dependent approach that can be applied within science, modeling, and resource management communities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...