Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hydrobiologia ; 849(21): 4803-4822, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213552

RESUMEN

Thermal stratification of reservoirs can lead to anaerobic conditions that facilitate the microbial conversion of mercury (Hg) to neurotoxic and bioaccumulative methylmercury (MeHg). But MeHg production is just the first step in a complex set of processes that affect MeHg in fish. Of particular relevance is uptake into suspended particulate matter (SPM) and zooplankton at the base of the pelagic food web. We assessed plankton dynamics and Hg uptake into the pelagic food web of four Hg-impaired California water reservoirs. Combining water chemistry, plankton taxonomy, and stable carbon (C) and nitrogen (N) isotope values of SPM and zooplankton samples, we investigated differences among the reservoirs that may contribute to differing patterns in MeHg bioaccumulation. Methylmercury accumulated in SPM during the spring and summer seasons. Percent MeHg (MeHg/Hg*100%) in SPM was negatively associated with δ15N values, suggesting that "fresh" algal biomass could support the production and bioaccumulation of MeHg. Zooplankton δ13C values were correlated with SPM δ13C values in the epilimnion, suggesting that zooplankton primarily feed in surface waters. However, zooplankton MeHg was poorly associated with MeHg in SPM. Our results demonstrate seasonal patterns in biological MeHg uptake and how multiple data sources can help constrain the drivers of MeHg bioaccumulation. Supplementary Information: The online version contains supplementary material available at 10.1007/s10750-022-05018-0.

2.
Environ Pollut ; 268(Pt B): 115853, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33120160

RESUMEN

Methylmercury (MeHg) produced by anaerobic bacteria in lakes and reservoirs, poses a threat to ecosystem and human health due to its ability to bioaccumulate in aquatic food webs. This study used 48-hr microcosm incubations of profundal sediment and bottom water from a sulfate-rich, hypereutrophic reservoir to assess seasonal patterns of MeHg cycling under various treatments. Treatments included addition of air, Hg(II), organic carbon, and microbial inhibitors. Both aeration and sodium molybdate, a sulfate-reducing bacteria (SRB) inhibitor, generally decreased MeHg concentration in microcosm water, likely by inhibiting SRB activity. The methanogenic inhibitor bromoethanesulfonate increased MeHg concentration 2- to 4- fold, suggesting that methanogens were potent demethylators. Pyruvate increased MeHg concentration under moderately reduced conditions, likely by stimulating SRB, but decreased it under highly reduced conditions, likely by stimulating methanogens. Acetate increased MeHg concentration, likely due to the stimulation of acetotrophic SRB. Results suggest that iron-reducing bacteria (IRB) were not especially prominent methylators and MeHg production at the sediment-water interface is elevated under moderately reduced conditions corresponding with SRB activity. In contrast, it is suppressed under oxic conditions due to low SRB activity, and under highly reduced conditions (<-100 mV) due to enhanced demethylation by methanogens.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Carbono , Ecosistema , Sedimentos Geológicos , Humanos , Mercurio/análisis , Sulfatos , Agua , Contaminantes Químicos del Agua/análisis
3.
Environ Pollut ; 268(Pt A): 115759, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33120343

RESUMEN

Almaden, Calero, and Guadalupe reservoirs (San Jose, CA, USA) are small (<13 million m3) surface water reservoirs polluted by the former New Almaden Mining District, North America's most productive historical mercury (Hg) mine. Stevens Creek Reservoir (Cupertino, CA, USA) also has elevated fish Hg concentrations, but no historical mining source. We report a 15-year dataset to evaluate the effectiveness of line diffuser hypolimnetic oxygenation systems (HOSs) in reducing methylmercury (MeHg) concentrations in reservoir water and fish after four consecutive years of operation. HOSs were installed in each reservoir to increase dissolved oxygen concentrations in bottom water, thereby suppressing the activity of anaerobic bacteria (e.g., sulfate-reducing bacteria) known to produce MeHg. Before HOS operation, MeHg concentrations increased in bottom waters of all four reservoirs during periods of thermal stratification and profundal hypoxia. MeHg concentrations decreased significantly in bottom waters during HOS operation, with mean reductions of 63%-85% below pre-oxygenation concentrations. However, MeHg concentrations were unchanged or increased in surface waters. This could be the result of enhanced mixing between surface and bottom waters as a result of line diffuser oxygenation, or continued Hg methylation occurring in the oxic water column and littoral sediments. Despite little change in whole water column MeHg concentrations, we observed modest but significant declining trends in fish tissue Hg in Guadalupe and Stevens Creek reservoirs. Results suggest that oxygenation, rather than directly lowering MeHg in water, may have mixed nutrients into surface waters, thereby enhancing primary productivity and indirectly affecting Hg bioaccumulation by diluting concentrations in phytoplankton.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , California , Monitoreo del Ambiente , Mercurio/análisis , Minería , Contaminantes Químicos del Agua/análisis
4.
Water Res ; 144: 740-751, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30125853

RESUMEN

Extensive contamination of aquatic ecosystems with mercury (Hg) has led to a growing interest in developing in situ management strategies to repress Hg bioaccumulation in aquatic biota in reservoirs. This study used experimental chamber incubations to assess the impact of three potential treatments, oxygen addition, nitrate addition and aluminum addition, to reduce the flux of toxic methylmercury (MeHg) from profundal reservoir sediment. The study sites, Almaden Lake and Guadalupe Reservoir, are located downstream of the historic New Almaden mining district in Santa Clara Valley, California, USA. In the first experiment (experiment 1), replicate chambers from both sites were incubated sequentially under aerobic and anaerobic conditions. At both sites, mean anaerobic fluxes of MeHg were higher than aerobic fluxes (Almaden: 11.0 vs. -2.3 ng/m2·d; Guadalupe: 22.3 vs 5.5 ng/m2·d), and anaerobic MeHg fluxes correlated with rates of sediment sulfate uptake, highlighting the linkage between MeHg production and microbial sulfate reduction. Under aerobic conditions, sediment from Guadalupe Reservoir released Hg(II), iron and sulfate, suggesting the oxidative dissolution of Hg-bearing sulfide minerals. A follow-up study at Almaden Lake (experiment 2) found that mean MeHg fluxes under aerobic conditions (5 ng/m2·d) and anoxic (nitrate-rich) conditions (1.7 ng/m2·d) were lower than anaerobic conditions (174 ng/m2·d), but aluminum addition had little effect (105 ng/m2·d) on MeHg flux. In both anaerobic and aluminum treated chambers, MeHg flux turned negative during the second half of the incubation, suggesting that highly reduced, sulfidic conditions lowered net methylation, possibly by enhancing demethylation or repressing Hg(II) bioavailability for methylation.


Asunto(s)
Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Aluminio , California , Ecosistema , Monitoreo del Ambiente , Estudios de Seguimiento , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA