Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 10780, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402780

RESUMEN

The Arg-specific gingipains of Porphyromonas gingivalis RgpA and RgpB have 97% identical sequences in their catalytic domains yet their propeptides are only 76% identical. RgpA isolates as a proteinase-adhesin complex (HRgpA) which hinders direct kinetic comparison of RgpAcat as a monomer with monomeric RgpB. We tested modifications of rgpA identifying a variant that enabled us to isolate histidine-tagged monomeric RgpA (rRgpAH). Kinetic comparisons between rRgpAH and RgpB used benzoyl-L-Arg-4-nitroanilide with and without cysteine and glycylglycine acceptor molecules. With no glycylglycine, values of Km, Vmax, kcat and kcat/Km for each enzyme were similar, but with glycylglycine Km decreased, Vmax increased and kcat increased ~ twofold for RgpB but ~ sixfold for rRgpAH. The kcat/Km for rRgpAH was unchanged whereas that of RgpB more than halved. Recombinant RgpA propeptide inhibited rRgpAH and RgpB with Ki 13 nM and 15 nM Ki respectively slightly more effectively than RgpB propeptide which inhibited rRgpAH and RgpB with Ki 22 nM and 29 nM respectively (p < 0.0001); a result that may be attributable to the divergent propeptide sequences. Overall, the data for rRgpAH reflected observations previously made by others using HRgpA, indicating rRgpAH fidelity and confirming the first production and isolation of functional affinity tagged RgpA.


Asunto(s)
Cisteína Endopeptidasas , Péptido Hidrolasas , Cisteína-Endopeptidasas Gingipaínas , Cisteína Endopeptidasas/metabolismo , Adhesinas Bacterianas/química , Dominio Catalítico , Porphyromonas gingivalis/metabolismo , Hemaglutininas/química
2.
Sci Rep ; 13(1): 4122, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914691

RESUMEN

The impact of SARS-CoV-2 infection on the nasopharyngeal microbiome has not been well characterised. We sequenced genetic material extracted from nasopharyngeal swabs of SARS-CoV-2-positive individuals who were asymptomatic (n = 14), had mild (n = 64) or severe symptoms (n = 11), as well as from SARS-CoV-2-negative individuals who had never-been infected (n = 5) or had recovered from infection (n = 7). Using robust filters, we identified 1345 taxa with approximately 0.1% or greater read abundance. Overall, the severe cohort microbiome was least diverse. Bacterial pathogens were found in all cohorts, but fungal species identifications were rare. Few taxa were common between cohorts suggesting a limited human nasopharynx core microbiome. Genes encoding resistance mechanisms to 10 antimicrobial classes (> 25% sequence coverages, 315 genes, 63 non-redundant) were identified, with ß-lactam resistance genes near ubiquitous. Patients infected with SARS-CoV-2 (asymptomatic and mild) had a greater incidence of antibiotic resistance genes and a greater microbial burden than the SARS-CoV-2-negative individuals. This should be considered when deciding how to treat COVID-19 related bacterial infections.


Asunto(s)
COVID-19 , Coinfección , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Antibacterianos , Disbiosis/genética , Farmacorresistencia Bacteriana , Nasofaringe
3.
Int J Mol Sci ; 23(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35628493

RESUMEN

The Bacteroidetes type IX secretion system (T9SS) consists of at least 20 components that translocate proteins with type A or type B C-terminal domain (CTD) signals across the outer membrane (OM). While type A CTD proteins are anchored to the cell surface via covalent linkage to the anionic lipopolysaccharide, it is still unclear how type B CTD proteins are anchored to the cell surface. Moreover, very little is known about the PorE and PorP components of the T9SS. In this study, for the first time, we identified a complex comprising the OM ß-barrel protein PorP, the OM-associated periplasmic protein PorE and the type B CTD protein PG1035. Cross-linking studies supported direct interactions between PorE-PorP and PorP-PG1035. Furthermore, we show that the formation of the PorE-PorP-PG1035 complex was independent of PorU and PorV. Additionally, the Flavobacterium johnsoniae PorP-like protein, SprF, was found bound to the major gliding motility adhesin, SprB, which is also a type B CTD protein. Together, these results suggest that type B-CTD proteins may anchor to the cell surface by binding to their respective PorP-like proteins.


Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Bacterianos , Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Transporte Biológico , Proteínas de la Membrana/metabolismo , Transporte de Proteínas
4.
J Oral Microbiol ; 13(1): 1858001, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33391630

RESUMEN

Background: The cell-surface cysteine proteinases RgpA, RgpB (Arg-gingipain), and Kgp (Lys-gingipain) are major virulence factors of P. gingivalis, a keystone pathogen in the development of destructive periodontal disease. The gingipains function as proteinases and transpeptidases utilising small peptides such as glycylglycine as acceptor molecules. However, the characteristics of the gingipains from most P. gingivalis strains have not been determined. Methods: We determined the phenotypes of a panel of P. gingivalis laboratory strains and global clinical isolates with respect to growth on blood agar plus whole-cell and vesicle-free culture supernatant (VFSN) Arg- and Lys-specific proteinase activities. Results: The P. gingivalis isolates exhibited different growth characteristics and hydrolysis of haemoglobin in solid media. Whole-cell Arg-gingipain Vmax varied 5.8-fold and the whole cell Lys-gingipain Vmax varied 2.1-fold across the strains. Furthermore, the P. gingivalis strains showed more than 107-fold variance in soluble Arg-gingipain activity in VFSN and more than 371-fold variance in soluble Lys-gingipain activity in VFSN. Glycylglycine and cysteine stimulated Arg- and Lys-specific cleavage activities of all strains. The stimulation by cysteine was in addition to its redox effect consistent with both glycylglycine and cysteine promoting transpeptidation. Conclusion: The global P. gingivalis clinical isolates exhibit different Arg- and Lys­gingipain activities with substantial variability in the level of soluble proteinases released into the environment.

5.
J Proteome Res ; 17(8): 2803-2818, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29984580

RESUMEN

Porphyromonas gingivalis is a keystone periodontal pathogen that has been associated with autoimmune disorders. The cell surface proteases Lys-gingipain (Kgp) and Arg-gingipains (RgpA and RgpB) are major virulence factors, and their proteolytic activity is enhanced by small peptides such as glycylglycine (GlyGly). The reaction kinetics suggested that GlyGly may function as an acceptor molecule for gingipain-catalyzed transpeptidation. Purified gingipains and P. gingivalis whole cells were used to digest selected substrates including human hemoglobin in the presence or absence of peptide acceptors. Mass spectrometric analysis of the substrates digested with gingipains in the presence of GlyGly showed that transpeptidation outcompeted hydrolysis, whereas the trypsin-digested controls exhibited predominantly hydrolysis activity. The transpeptidation levels increased with increasing concentration of GlyGly. Purified gingipains and whole cells exhibited extensive transpeptidation activities on human hemoglobin. All hemoglobin cleavage sites were found to be suitable for GlyGly transpeptidation, and this transpeptidation enhanced hemoglobin digestion. The transpeptidation products were often more abundant than the corresponding hydrolysis products. In the absence of GlyGly, hemoglobin peptides produced during digestion were utilized as acceptors leading to the detection of up to 116 different transpeptidation products in a single reaction. P. gingivalis cells were able to digest hemoglobin faster when acceptor peptides derived from human serum albumin were included in the reaction, suggesting that gingipain-catalyzed transpeptidation may be relevant for substrates encountered in vivo. The transpeptidation of host proteins in vivo may potentially lead to the breakdown of immunological tolerance, culminating in autoimmune reactions.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Peptidil Transferasas/metabolismo , Porphyromonas gingivalis/enzimología , Autoinmunidad , Cisteína-Endopeptidasas Gingipaínas , Hemoglobinas/metabolismo , Humanos , Proteolisis , Factores de Virulencia/metabolismo
6.
Front Microbiol ; 8: 48, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28184216

RESUMEN

Porphyromonas gingivalis is a keystone pathogen of chronic periodontitis. The virulence of P. gingivalis is reported to be strain related and there are currently a number of strain typing schemes based on variation in capsular polysaccharide, the major and minor fimbriae and adhesin domains of Lys-gingipain (Kgp), amongst other surface proteins. P. gingivalis can exchange chromosomal DNA between strains by natural competence and conjugation. The aim of this study was to determine the genetic variability of P. gingivalis strains sourced from international locations over a 25-year period and to determine if variability in surface virulence factors has a phylogenetic basis. Whole genome sequencing was performed on 13 strains and comparison made to 10 previously sequenced strains. A single nucleotide polymorphism-based phylogenetic analysis demonstrated a shallow tri-lobed phylogeny. There was a high level of reticulation in the phylogenetic network, demonstrating extensive horizontal gene transfer between the strains. Two highly conserved variants of the catalytic domain of the major virulence factor the Kgp proteinase (KgpcatI and KgpcatII) were found. There were three variants of the fourth Kgp C-terminal cleaved adhesin domain. Specific variants of the cell surface proteins FimA, FimCDE, MfaI, RagAB, Tpr, and PrtT were also identified. The occurrence of all these variants in the P. gingivalis strains formed a mosaic that was not related to the SNP-based phylogeny. In conclusion P. gingivalis uses domain rearrangements and genetic exchange to generate diversity in specific surface virulence factors.

7.
PLoS One ; 11(10): e0164313, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27711252

RESUMEN

Porphyromonas gingivalis utilises the Bacteroidetes-specific type IX secretion system (T9SS) to export proteins across the outer membrane (OM), including virulence factors such as the gingipains. The secreted proteins have a conserved carboxy-terminal domain essential for type IX secretion that is cleaved upon export. In P. gingivalis the T9SS substrates undergo glycosylation with anionic lipopolysaccharide (A-LPS) and are attached to the OM. In this study, comparative analyses of 24 Bacteroidetes genomes identified ten putative novel components of the T9SS in P. gingivalis, one of which was PG1058. Computer modelling of the PG1058 structure predicted a novel N- to C-terminal architecture comprising a tetratricopeptide repeat (TPR) domain, a ß-propeller domain, a carboxypeptidase regulatory domain-like fold (CRD) and an OmpA_C-like putative peptidoglycan binding domain. Inactivation of pg1058 in P. gingivalis resulted in loss of both colonial pigmentation and surface-associated proteolytic activity; a phenotype common to T9SS mutants. Immunoblot and LC-MS/MS analyses of subcellular fractions revealed T9SS substrates accumulated within the pg1058 mutant periplasm whilst whole-cell ELISA showed the Kgp gingipain was absent from the cell surface, confirming perturbed T9SS function. Immunoblot, TEM and whole-cell ELISA analyses indicated A-LPS was produced and present on the pg1058 mutant cell surface although it was not linked to T9SS substrate proteins. This indicated that PG1058 is crucial for export of T9SS substrates but not for the translocation of A-LPS. PG1058 is a predicted lipoprotein and was localised to the periplasmic side of the OM using whole-cell ELISA, immunoblot and LC-MS/MS analyses of subcellular fractions. The structural prediction and localisation of PG1058 suggests that it may have a role as an essential scaffold linking the periplasmic and OM components of the T9SS.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Ligadas a Lípidos/química , Porphyromonas gingivalis/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Cromatografía Líquida de Alta Presión , Ensayo de Inmunoadsorción Enzimática , Immunoblotting , Proteínas Ligadas a Lípidos/genética , Proteínas Ligadas a Lípidos/inmunología , Proteínas Ligadas a Lípidos/metabolismo , Lipopolisacáridos/metabolismo , Datos de Secuencia Molecular , Mutación , Péptido Hidrolasas/metabolismo , Fenotipo , Porphyromonas gingivalis/genética , Dominios Proteicos , Espectrometría de Masas en Tándem
8.
PLoS One ; 11(3): e0151407, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27007570

RESUMEN

PgMntR is a predicted member of the DtxR family of transcriptional repressors responsive to manganese in the anaerobic periodontal pathogen Porphyromonas gingivalis. Our bioinformatic analyses predicted that PgMntR had divalent metal binding site(s) with elements of both manganous and ferrous ion specificity and that PgMntR has unusual twin C-terminal FeoA domains. We produced recombinant PgMntR and four variants to probe the specificity of metal binding and its impact on protein structure and DNA binding. PgMntR dimerised in the absence of a divalent transition metal cation. PgMntR bound three Mn(II) per monomer with an overall dissociation constant Kd 2.0 x 10(-11) M at pH 7.5. PgMntR also bound two Fe(II) with distinct binding affinities, Kd1 2.5 x 10(-10) M and Kd2 ≤ 6.0 x 10(-8) M at pH 6.8. Two of the metal binding sites may form a binuclear centre with two bound Mn2+ being bridged by Cys108 but this centre provided only one site for Fe2+. Binding of Fe2+ or Mn2+ did not have a marked effect on the PgMntR secondary structure. Apo-PgMntR had a distinct affinity for the promoter region of the gene encoding the only known P. gingivalis manganese transporter, FB2. Mn2+ increased the DNA binding affinity of PgMntR whilst Fe2+ destabilised the protein-DNA complex in vitro. PgMntR did not bind the promoter DNA of the gene encoding the characterised iron transporter FB1. The C-terminal FeoA domain was shown to be essential for PgMntR structure/function, as its removal caused the introduction of an intramolecular disulfide bond and abolished the binding of Mn2+ and DNA. These data indicate that PgMntR is a novel member of the DtxR family that may function as a transcriptional repressor switch to specifically regulate manganese transport and homeostasis in an iron-dependent manner.


Asunto(s)
Proteínas Bacterianas/metabolismo , Manganeso/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Porphyromonas gingivalis/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas de Transporte de Membrana/química , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido
9.
PLoS Pathog ; 11(9): e1005152, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26340749

RESUMEN

The type IX secretion system (T9SS) of Porphyromonas gingivalis secretes proteins possessing a conserved C-terminal domain (CTD) to the cell surface. The C-terminal signal is essential for these proteins to translocate across the outer membrane via the T9SS. On the surface the CTD of these proteins is cleaved prior to extensive glycosylation. It is believed that the modification on these CTD proteins is anionic lipopolysaccharide (A-LPS), which enables the attachment of CTD proteins to the cell surface. However, the exact site of modification and the mechanism of attachment of CTD proteins to the cell surface are unknown. In this study we characterized two wbaP (PG1964) mutants that did not synthesise A-LPS and accumulated CTD proteins in the clarified culture fluid (CCF). The CTDs of the CTD proteins in the CCF were cleaved suggesting normal secretion, however, the CTD proteins were not glycosylated. Mass spectrometric analysis of CTD proteins purified from the CCF of the wbaP mutants revealed the presence of various peptide/amino acid modifications from the growth medium at the C-terminus of the mature CTD proteins. This suggested that modification occurs at the C-terminus of T9SS substrates in the wild type P. gingivalis. This was confirmed by analysis of CTD proteins from wild type, where a 648 Da linker was identified to be attached at the C-terminus of mature CTD proteins. Importantly, treatment with proteinase K released the 648 Da linker from the CTD proteins demonstrating a peptide bond between the C-terminus and the modification. Together, this is suggestive of a mechanism similar to sortase A for the cleavage and modification/attachment of CTD proteins in P. gingivalis. PG0026 has been recognized as the CTD signal peptidase and is now proposed to be the sortase-like protein in P. gingivalis. To our knowledge, this is the first biochemical evidence suggesting a sortase-like mechanism in Gram-negative bacteria.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Cisteína Endopeptidasas/metabolismo , Porphyromonas gingivalis/fisiología , Procesamiento Proteico-Postraduccional , Aminoaciltransferasas/química , Aminoaciltransferasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Endopeptidasa K , Eliminación de Gen , Peso Molecular , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Mapeo Peptídico , Porphyromonas gingivalis/enzimología , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
Protein Sci ; 24(1): 162-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25327141

RESUMEN

The oral pathogen Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis. Gingipains, the principle virulence factors of P. gingivalis are multidomain, cell-surface proteins containing a cysteine protease domain. The lysine specific gingipain, Kgp, is a critical virulence factor of P. gingivalis. We have determined the X-ray crystal structure of the lysine-specific protease domain of Kgp to 1.6 Å resolution. The structure provides insights into the mechanism of substrate specificity and catalysis.


Asunto(s)
Adhesinas Bacterianas/química , Infecciones por Bacteroidaceae/microbiología , Cisteína Endopeptidasas/química , Porphyromonas gingivalis/química , Adhesinas Bacterianas/metabolismo , Infecciones por Bacteroidaceae/prevención & control , Cristalografía por Rayos X , Cisteína Endopeptidasas/metabolismo , Cisteína-Endopeptidasas Gingipaínas , Humanos , Modelos Moleculares , Salud Bucal , Porphyromonas gingivalis/metabolismo , Conformación Proteica
11.
PLoS One ; 9(11): e111168, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25375181

RESUMEN

Porphyromonas gingivalis is a Gram-negative pathogen associated with the biofilm-mediated disease chronic periodontitis. P. gingivalis biofilm formation is dependent on environmental heme for which P. gingivalis has an obligate requirement as it is unable to synthesize protoporphyrin IX de novo, hence P. gingivalis transports iron and heme liberated from the human host. Homeostasis of a variety of transition metal ions is often mediated in Gram-negative bacteria at the transcriptional level by members of the Ferric Uptake Regulator (Fur) superfamily. P. gingivalis has a single predicted Fur superfamily orthologue which we have designated Har (heme associated regulator). Recombinant Har formed dimers in the presence of Zn2+ and bound one hemin molecule per monomer with high affinity (Kd of 0.23 µM). The binding of hemin resulted in conformational changes of Zn(II)Har and residue 97Cys was involved in hemin binding as part of a predicted -97C-98P-99L- hemin binding motif. The expression of 35 genes was down-regulated and 9 up-regulated in a Har mutant (ECR455) relative to wild-type. Twenty six of the down-regulated genes were previously found to be up-regulated in P. gingivalis grown as a biofilm and 11 were up-regulated under hemin limitation. A truncated Zn(II)Har bound the promoter region of dnaA (PGN_0001), one of the up-regulated genes in the ECR455 mutant. This binding decreased as hemin concentration increased which was consistent with gene expression being regulated by hemin availability. ECR455 formed significantly less biofilm than the wild-type and unlike wild-type biofilm formation was independent of hemin availability. P. gingivalis possesses a hemin-binding Fur orthologue that regulates hemin-dependent biofilm formation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , ADN Bacteriano/metabolismo , Hemina/metabolismo , Porphyromonas gingivalis/metabolismo , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Transporte Biológico , ADN Bacteriano/genética , Hemo/metabolismo , Porphyromonas gingivalis/genética , Proteínas Represoras/genética
12.
J Proteomics ; 110: 72-92, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25111759

RESUMEN

Membrane complexes of Porphyromonas gingivalis were analyzed using two dimensional-blue native-PAGE. The molecular mass of the gingipain complexes, RgpA and Kgp, ranged from 450 kDa to greater than 1200 kDa, and did not change in single rgpA and kgp mutants indicating that the proteolytically processed polyproteins were independently capable of forming complexes. The outer membrane protein, LptO, which is essential for gingipain secretion, was found in up to seven different complex sizes. PG0026, also important for secretion, was observed to interact with the largest LptO complex [VII] at 480 kDa, supporting a cooperative role in secretion. Two pro-form RgpB intermediates formed a complex before cleavage of their C-terminal secretion signal domains (CTDs) such that complex formation may occur during secretion and processing. This may also be the case for other CTD-proteins as not only modified, mature RgpB, but also CPG70 was found to exist as multi-subunit complexes. RagA and RagB were observed in three different complex sizes. Elimination of the abundant gingipains enabled the identification of many inner and outer membrane protein complexes: TonB:ExbB:ExbD, Omp85, P51:PG2168, PorK:PorN, PG0056, PG0241, PG1430 and five proposed respiratory chain complexes (Mmd, Nqr, Rnf, Frd/Sdh and Atp). BIOLOGICAL SIGNIFICANCE: Porphyromonas gingivalis is a major oral pathogen associated with chronic periodontitis in humans. Secreted gingipains are considered major virulence factors of this pathogen and are secreted by a newly described type IX secretion system. This work has used 2D-BN-PAGE and MS to demonstrate that mature gingipains can independently form complexes and that substrate intermediates and mature secreted proteins of the type IX secretion system form multi-subunit complexes. Based on this work we propose that the substrates of this secretion system are secreted as large multi-subunit protein complexes. Two known important components of the secretion machinery, PG0026 and the integral outer membrane protein, LptO, were found to interact which would anchor PG0026 to the outer membrane and perhaps aid in the function of PG0026 to cleave the CTD from secreted substrates. The work has also identified more than 100 membrane proteins forming multi-subunit complexes.


Asunto(s)
Proteínas Bacterianas/química , Electroforesis en Gel Bidimensional/métodos , Proteínas de la Membrana/química , Mapeo Peptídico/métodos , Porphyromonas gingivalis/química , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Peso Molecular
13.
PLoS Pathog ; 10(3): e1003955, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24603978

RESUMEN

Porphyromonas gingivalis and Treponema denticola are strongly associated with chronic periodontitis. These bacteria have been co-localized in subgingival plaque and demonstrated to exhibit symbiosis in growth in vitro and synergistic virulence upon co-infection in animal models of disease. Here we show that during continuous co-culture a P. gingivalis:T. denticola cell ratio of 6∶1 was maintained with a respective increase of 54% and 30% in cell numbers when compared with mono-culture. Co-culture caused significant changes in global gene expression in both species with altered expression of 184 T. denticola and 134 P. gingivalis genes. P. gingivalis genes encoding a predicted thiamine biosynthesis pathway were up-regulated whilst genes involved in fatty acid biosynthesis were down-regulated. T. denticola genes encoding virulence factors including dentilisin and glycine catabolic pathways were significantly up-regulated during co-culture. Metabolic labeling using 13C-glycine showed that T. denticola rapidly metabolized this amino acid resulting in the production of acetate and lactate. P. gingivalis may be an important source of free glycine for T. denticola as mono-cultures of P. gingivalis and T. denticola were found to produce and consume free glycine, respectively; free glycine production by P. gingivalis was stimulated by T. denticola conditioned medium and glycine supplementation of T. denticola medium increased final cell density 1.7-fold. Collectively these data show P. gingivalis and T. denticola respond metabolically to the presence of each other with T. denticola displaying responses that help explain enhanced virulence of co-infections.


Asunto(s)
Porphyromonas gingivalis/metabolismo , Simbiosis/fisiología , Treponema denticola/metabolismo , Técnicas de Cocultivo , Coinfección , Microscopía Electrónica de Rastreo , Análisis de Secuencia por Matrices de Oligonucleótidos , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma , Treponema denticola/genética , Treponema denticola/crecimiento & desarrollo
14.
PLoS One ; 8(6): e65447, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23762374

RESUMEN

Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis. The organism's cell-surface cysteine proteinases, the Arg-specific proteinases (RgpA, RgpB) and the Lys-specific proteinase (Kgp), which are known as gingipains have been implicated as major virulence factors. All three gingipain precursors contain a propeptide of around 200 amino acids in length that is removed during maturation. The aim of this study was to characterize the inhibitory potential of the Kgp and RgpB propeptides against the mature cognate enzymes. Mature Kgp was obtained from P. gingivalis mutant ECR368, which produces a recombinant Kgp with an ABM1 motif deleted from the catalytic domain (rKgp) that enables the otherwise membrane bound enzyme to dissociate from adhesins and be released. Mature RgpB was obtained from P. gingivalis HG66. Recombinant propeptides of Kgp and RgpB were produced in Escherichia coli and purified using nickel-affinity chromatography. The Kgp and RgpB propeptides displayed non-competitive inhibition kinetics with K(i) values of 2.04 µM and 12 nM, respectively. Both propeptides exhibited selectivity towards their cognate proteinase. The specificity of both propeptides was demonstrated by their inability to inhibit caspase-3, a closely related cysteine protease, and papain that also has a relatively long propeptide. Both propeptides at 100 mg/L caused a 50% reduction of P. gingivalis growth in a protein-based medium. In summary, this study demonstrates that gingipain propeptides are capable of inhibiting their mature cognate proteinases.


Asunto(s)
Adhesinas Bacterianas/química , Cisteína Endopeptidasas/química , Hemaglutininas/química , Fragmentos de Péptidos/farmacología , Porphyromonas gingivalis/fisiología , Precursores de Proteínas/fisiología , Proteínas Recombinantes/farmacología , Adhesinas Bacterianas/metabolismo , Secuencia de Aminoácidos , Caspasa 3/química , Caspasa 3/metabolismo , Dominio Catalítico , Cromatografía Liquida , Cisteína Endopeptidasas/metabolismo , Cisteína-Endopeptidasas Gingipaínas , Hemaglutininas/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
FEBS Lett ; 587(9): 1275-80, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23499434

RESUMEN

Arg-gingipain B (RgpB), a major virulence factor secreted by the periodontal pathogen Porphyromonas gingivalis is an Arg-specific cysteine proteinase. By monitoring proteolytic cleavage of a human salivary peptide histatin 5 using MALDI-TOF MS, RgpB purified from P. gingivalis HG66 was found to shift from a dominant Arg-X to dominant Lys-X activity, both in vitro and in vivo, upon reversible cysteine oxidation. Native PAGE analysis revealed the association of novel Lys-X activity with a reversible state change of the oxidized enzyme. The redox-regulated Lys-X activity of RgpB may provide a survival advantage to P. gingivalis against the oxidative host defence.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Porphyromonas gingivalis/enzimología , Adhesinas Bacterianas/química , Secuencia de Aminoácidos , Dominio Catalítico , Cisteína Endopeptidasas/química , Cisteína-Endopeptidasas Gingipaínas , Histatinas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Porphyromonas gingivalis/citología , Solubilidad , Especificidad por Sustrato
16.
J Bacteriol ; 193(1): 132-42, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20971915

RESUMEN

Porphyromonas gingivalis, a periodontal pathogen, expresses a group of surface proteins with a common C-terminal domain (CTD) that are exported by a novel secretion system to the surface, where they are covalently attached. Using RgpB as a model CTD protein, we have produced a series of site-directed mutations in the CTD sequence at conserved residues and at residues that may be modified and, hence, surface attached. The mutant RgpB proteins were expressed in a P. gingivalis host lacking functional RgpB and RgpA Arg-specific proteases. The RgpB mutants produced were Y674F, Y674F Y718F, T675Q S679Q T682Q T684Q, T693Q, F695A, D696A, N698A, G699P, G716P, T724Q, T728Q T730Q, and K732Q and a protein with a deletion of residues 692 to 702 (Δ692-702). The mutants were characterized for cell-associated Arg-specific protease activity and for cellular distribution using anti-Rgp antibodies and Western blotting of culture fractions. All the mutants exhibited cell-associated Arg-specific activity similar to that of the positive control except for the D696A and Δ692-702 mutants. For all mutants, except D696A and Δ692-702, the RgpB proteins were found modified and attached to the cell surface, which was the same profile found in the positive-control strain. Only trace amounts of the precursor form of the Δ692-702 mutant were detected in the outer membrane, with none detected in the periplasm or culture fluid although cell transcript levels were normal. The results suggest that residues 692 to 702 of the CTD, in particular, residue D696, have an important role in the attachment of RgpB at the cell surface and that without attachment secretion does not occur.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Porphyromonas gingivalis/metabolismo , Adhesinas Bacterianas/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Adhesión Bacteriana/fisiología , Cisteína Endopeptidasas/genética , Cisteína-Endopeptidasas Gingipaínas , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Porphyromonas gingivalis/genética
17.
BMC Microbiol ; 9: 18, 2009 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-19175941

RESUMEN

BACKGROUND: Porphyromonas gingivalis in subgingival dental plaque, as part of a mature biofilm, has been strongly implicated in the onset and progression of chronic periodontitis. In this study using DNA microarray we compared the global gene expression of a P. gingivalis biofilm with that of its planktonic counterpart grown in the same continuous culture. RESULTS: Approximately 18% (377 genes, at 1.5 fold or more, P-value < 0.01) of the P. gingivalis genome was differentially expressed when the bacterium was grown as a biofilm. Genes that were down-regulated in biofilm cells, relative to planktonic cells, included those involved in cell envelope biogenesis, DNA replication, energy production and biosynthesis of cofactors, prosthetic groups and carriers. A number of genes encoding transport and binding proteins were up-regulated in P. gingivalis biofilm cells. Several genes predicted to encode proteins involved in signal transduction and transcriptional regulation were differentially regulated and may be important in the regulation of biofilm growth. CONCLUSION: This study analyzing global gene expression provides insight into the adaptive response of P. gingivalis to biofilm growth, in particular showing a down regulation of genes involved in growth and metabolic activity.


Asunto(s)
Biopelículas , Perfilación de la Expresión Génica , Porphyromonas gingivalis/genética , Regulación Bacteriana de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Porphyromonas gingivalis/crecimiento & desarrollo , Porphyromonas gingivalis/metabolismo , ARN Bacteriano/genética
18.
J Bacteriol ; 191(3): 1044-55, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19028886

RESUMEN

Porphyromonas gingivalis is an anaerobic, asaccharolytic, gram-negative bacterium that has essential requirements for both iron and protoporphyrin IX, which it preferentially obtains as heme. A combination of large-scale quantitative proteomic analysis using stable isotope labeling strategies and mass spectrometry, together with transcriptomic analysis using custom-made DNA microarrays, was used to identify changes in P. gingivalis W50 protein and transcript abundances on changing from heme-excess to heme-limited continuous culture. This approach identified 160 genes and 70 proteins that were differentially regulated by heme availability, with broad agreement between the transcriptomic and proteomic data. A change in abundance of the enzymes of the aspartate and glutamate catabolic pathways was observed with heme limitation, which was reflected in organic acid end product levels of the culture fluid. These results demonstrate a shift from an energy-efficient anaerobic respiration to a less efficient process upon heme limitation. Heme limitation also resulted in an increase in abundance of a protein, PG1374, which we have demonstrated, by insertional inactivation, to have a role in epithelial cell invasion. The greater abundance of a number of transcripts/proteins linked to invasion of host cells, the oxidative stress response, iron/heme transport, and virulence of the bacterium indicates that there is a broad response of P. gingivalis to heme availability.


Asunto(s)
Hemo/farmacología , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromatografía Liquida , Medios de Cultivo/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Espectrometría de Masas , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Porphyromonas gingivalis/crecimiento & desarrollo , Proteómica/métodos , Transcripción Genética/efectos de los fármacos
19.
J Bacteriol ; 188(17): 6376-86, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16923905

RESUMEN

Porphyromonas gingivalis produces outer membrane-attached proteins that include the virulence-associated proteinases RgpA and RgpB (Arg-gingipains) and Kgp (Lys-gingipain). We analyzed the P. gingivalis outer membrane proteome and identified numerous proteins with C-terminal domains similar in sequence to those of RgpB, RgpA, and Kgp, indicating that these domains may have a common function. Using RgpB as a model to investigate the role of the C-terminal domain, we expressed RgpB as a full-length zymogen (recombinant RgpB [rRgpB]), with a catalytic Cys244Ala mutation [rRgpB(C244A)], or with the C-terminal 72 amino acids deleted (rRgpB435) in an Arg-gingipain P. gingivalis mutant (YH522AB) and an Arg- and Lys-gingipain mutant (YH522KAB). rRgpB was catalytically active and located predominantly attached to the outer membrane of both background strains. rRgpB(C244A) was inactive and outer membrane attached, with a typical attachment profile for both background strains according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but in YH522KAB, the prodomain was not removed. Thus, in vivo, RgpB export and membrane attachment are independent of the proteolytic activity of RgpA, RgpB, or Kgp. However, for maturation involving proteolytic processing of RgpB, the proteolytic activity of RgpB, RgpA, or Kgp is required. The C-terminally-truncated rRgpB435 was not attached to the outer membrane and was located as largely inactive, discrete 71-kDa and 48-kDa isoforms in the culture supernatant and the periplasm. These results suggest that the C-terminal domain is essential for outer membrane attachment and may be involved in a coordinated process of export and attachment to the cell surface.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Cisteína Endopeptidasas/metabolismo , Hemaglutininas/metabolismo , Porphyromonas gingivalis/fisiología , Procesamiento Proteico-Postraduccional , Adhesinas Bacterianas/genética , Secuencia de Aminoácidos , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Cisteína-Endopeptidasas Gingipaínas , Hemaglutininas/química , Hemaglutininas/genética , Datos de Secuencia Molecular , Peso Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA