Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-23755009

RESUMEN

The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

2.
Comput Biol Med ; 42(8): 857-62, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22795226

RESUMEN

In this paper we detail a phase lagging model of brain response to external stimuli. The model is derived using the basic laws of physics like conservation of energy law. This model eliminates the paradox of instantaneous propagation of the action potential in the brain. The solution of this model is then presented. The model is further applied in the case of a single neuron and is verified by simulating a single action potential. The results of this modeling are useful not only for the fundamental understanding of single action potential generation, but also they can be applied in case of neuronal interactions, where the results can be verified against the real EEG signal.


Asunto(s)
Encéfalo/fisiología , Modelos Neurológicos , Neuronas/fisiología , Potenciales de Acción/fisiología , Electroencefalografía , Humanos , Reproducibilidad de los Resultados
3.
Artículo en Inglés | MEDLINE | ID: mdl-23366767

RESUMEN

Recent research has shown that a P300 system can be used while walking without requiring any specific gait-related artifact removal techniques. Also, standard EEG-based Brain-Computer Interfaces (BCI) have not been really assessed for lower limb rehabilitation/prosthesis. Therefore, this paper gives a first baseline estimation (for future BCI comparisons) of the subjective and objective performances of a four-state P300 BCI plus a non-control state for lower-limb rehabilitation purposes. To assess usability and workload, the System Usability Scale and the NASA Task Load Index questionnaires were administered to five healthy subjects after performing a real-time treadmill speed control. Results show that the P300 BCI approach could suit fitness and rehabilitation applications, whereas prosthesis control, which suffers from a low reactivity, appears too sensitive for risky and crowded areas.


Asunto(s)
Encéfalo/fisiopatología , Potenciales Relacionados con Evento P300/fisiología , Extremidad Inferior/fisiopatología , Rehabilitación/métodos , Interfaz Usuario-Computador , Adulto , Femenino , Humanos , Masculino , Encuestas y Cuestionarios , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...