Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1750, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242933

RESUMEN

Controlling the dynamics of droplet evaporation is critical to numerous fundamental and industrial applications. The three main modes of evaporation so far reported on smooth surfaces are the constant contact radius (CCR), constant contact angle (CCA), and mixed mode. Previously reported methods for controlling droplet evaporation include chemical or physical modifications of the surfaces via surface coating. These often require complex multiple stage processing, which eventually enables similar droplet-surface interactions. By leveraging the change in the physicochemical properties of the outermost surface by different silicone oil grafting fabrication parameters, the evaporation dynamics and the duration of the different evaporation modes can be controlled. After grafting one layer of oil, the intrinsic hydrophilic silicon surface (contact angle (CA) ≈ 60°) is transformed into a hydrophobic surface (CA ≈ 108°) with low contact angle hysteresis (CAH). The CAH can be tuned between 1° and 20° depending on the fabrication parameters such as oil viscosity, volume, deposition method as well as the number of layers, which in turn control the duration of the different evaporation modes. In addition, the occurrence and strength of stick-slip behaviour during evaporation can be additionally controlled by the silicone oil grafting procedure adopted. These findings provide guidelines for controlling the droplet-surface interactions by either minimizing or maximising contact line initial pinning, stick-slip and/or constant contact angle modes of evaporation. We conclude that the simple and scalable silicone oil grafted coatings reported here provide similar functionalities to slippery liquid infused porous surfaces (SLIPSs), quasi-liquid surfaces (QLS), and/or slippery omniphobic covalently attached liquid (SOCAL) surfaces, by empowering pinning-free surfaces, and have great potential for use in self-cleaning surfaces or uniform particle deposition.

2.
Adv Colloid Interface Sci ; 324: 103075, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219342

RESUMEN

A consensus was built in the first half of the 20th century, which was further debated more than 3 decades ago, that the wettability and condensation mechanisms on smooth solid surfaces are modified by the adsorption of organic contaminants present in the environment. Recently, disagreement has formed about this topic once again, as many researchers have overlooked contamination due to its difficulty to eliminate. For example, the intrinsic wettability of rare earth oxides has been reported to be hydrophobic and non-wetting to water. These materials were subsequently shown to display dropwise condensation with steam. Nonetheless, follow on research has demonstrated that the intrinsic wettability of rare earth oxides is hydrophilic and wetting to water, and that a transition to hydrophobicity occurs in a matter of hours-to-days as a consequence of the adsorption of volatile organic compounds from the ambient environment. The adsorption mechanisms, kinetics, and selectivity, of these volatile organic compounds are empirically known to be functions of the substrate material and structure. However, these mechanisms, which govern the surface wettability, remain poorly understood. In this contribution, we introduce current research demonstrating the different intrinsic wettability of metals, rare earth oxides, and other smooth materials, showing that they are intrinsically hydrophilic. Then we provide details on research focusing on the transition from wetting (hydrophilicity) to non-wetting (hydrophobicity) on somooth surfaces due to adsorption of volatile organic compounds. A state-of-the-art figure of merit mapping the wettability of different smooth solid surfaces to ambient exposure as a function of the surface carbon content has also been developed. In addition, we analyse recent works that address these wetting transitions so to shed light on how such processes affect droplet pinning and lateral adhesion. We then conclude with objective perspectives about research on wetting to non-wetting transitions on smooth solid surfaces in an attempt to raise awareness regarding this surface contamination phenomenon within the engineering, interfacial science, and physical chemistry domains.

3.
Langmuir ; 39(23): 8323-8338, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37272784

RESUMEN

The interactions between liquid droplets and solid surfaces during wetting and phase change are important to many applications and are related to the physicochemical properties of the substrate and the fluid. In this work, we investigate experimentally the evaporation of pure water, pure ethanol, and their binary mixture droplets, accessing a wide range of surface tensions, on hydrophobic micro-pillared surfaces varying the spacing between the pillars. Results show that on structured surfaces, droplets evaporate following three classical evaporative behaviors: constant contact radius/pinning, stick-slip, or mixed mode. In addition, we report two further droplet evaporation modes, which are a mixed stick-slip mode where the contact angle increases while the contact radius decreases in a stick-slip fashion and a mixed stick-slip mode where both the contact angle and the contact radius decrease in a stick-slip fashion. We name these evaporation modes not yet reported in the literature as the increasing and decreasing contact angle mixed stick-slip modes, respectively. The former ensues because the fluid surface tension increases as the most volatile fluid evaporates coupled to the presence of structures, whereas the latter is due to the presence of structures for either fluid. The duration of each evaporation mode is dissimilar and depends on the surface tension and on the spacing between structures. Pure water yields longer initial pinning times on all surfaces before stick-slip ensues, whereas for binary mixtures and pure ethanol, initial pinning ensues mainly on short spacing structures due to the different wetting regimes displayed. Meanwhile, mixed stick-slip modes ensue mainly for high ethanol concentrations and/or pure ethanol independent of the solid fraction and for low ethanol concentrations on large spacing. Contact line jumps, changes in contact angle and pinning forces are also presented and discussed. This investigation provides guidelines for tailoring the evaporation of a wide range of surface tension fluids on structured surfaces for inkjet printing, DNA patterning, or microfluidics applications.

4.
ACS Appl Mater Interfaces ; 15(8): 11281-11295, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36790315

RESUMEN

Wetting plays a major role in the close interactions between liquids and solid surfaces, which can be tailored by modifying the chemistry as well as the structures of the surfaces' outermost layer. Several methodologies, such as chemical vapor deposition, physical vapor deposition, electroplating, and chemical reactions, among others, have been adopted for the alteration/modification of such interactions suitable for various applications. However, the fabrication of low-contact line-pinning hydrophobic surfaces via simple and easy methods remains an open challenge. In this work, we exploit one-step and multiple-step silicone oil (5-100 cSt) grafting on smooth silicon substrates (although the technique is suitable for other substrates), looking closely at the effect of viscosity as well as the volume and layers (one to five) of oil grafted as a function of the deposition method. Remarkably, the optimization of grafting of silicone oil fabrication results in non-wetting surfaces with extremely low contact angle hysteresis (CAH) below 1° and high contact angles (CAs) of ∼108° after a single grafting step, which is an order of magnitude smaller than the reported values of previous works on silicone oil-grafted surfaces. Moreover, the different droplet-surface interactions and pinning behavior can additionally be tailored to the specific application with CAH ranging from 1 to 20° and sliding angles between 1.5 and 60° (for droplet volumes of 3 µL), depending on the fabrication parameters adopted. In terms of roughness, all the samples (independent of the grafting parameters) showed small changes in the root-mean-square roughness below 20 nm. Lastly, stability analysis of the grafting method reported here under various conditions shows that the coating is quite stable under mechanical vibrations (bath ultrasonication) and in a chemical environment (ultrasonication in a bath of ethanol) but loses its low-pinning characteristics when exposed to saturated steam at T ∼ 99 °C. The findings presented here provide a basis for selecting the most appropriate and suitable method and parameters for silicone oil grafting aimed at low pinning and low hysteresis surfaces for specific applications.

5.
Langmuir ; 38(49): 15063-15076, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36442152

RESUMEN

Deposits formed after evaporation of sessile droplets, containing aqueous solutions of poly(ethylene oxide), on hydrophilic glass substrates were studied experimentally and mathematically as a function of the initial solution concentration. The macrostructure and micro/nanostructures of deposits were studied using stereo microscopy and atomic force microscopy. A model, based on thin-film lubrication theory, was developed to evaluate the deposit macrostructure by estimating the droplet final height. Moreover, the model was extended to evaluate the micro/nanostructure of deposits by estimating the rate of supersaturation development in connection with the driving force of crystallization. Previous studies had only described the macrostructure of poly(ethylene oxide) deposits formed after droplet evaporation, whereas the focus of our study was the deposit micro/nanostructures. Our atomic force microscopy study showed that regions close to the deposit periphery were composed of predominantly semicrystalline micro/nanostructures in the form of out-of-plane lamellae, which require a high driving force of crystallization. However, deposit central areas presented semicrystalline micro/nanostructures in the form of in-plane terraces and spirals, which require a lower driving force of crystallization. Increasing the initial concentration of solutions led to an increase in the lengths and thicknesses of the out-of-plane lamellae at the deposits' periphery and enhanced the tendency to form spirals in the central areas. Our numerical study suggested that the rate of supersaturation development and thus the driving force of crystallization increased from the center toward the periphery of droplets, and the supersaturation rate was lower for solutions with higher initial concentrations at each radius. Therefore, periphery areas of droplets with lower initial concentrations were suitable for the formation of micro/nanostructures which require higher driving forces, whereas central areas of droplets with higher initial concentration were desirable for the formation of micro/nanostructures which require lower driving forces. These numerical results were in good qualitative agreement with the experimental findings.

6.
Langmuir ; 38(14): 4321-4331, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35357835

RESUMEN

The desiccation of biofluid droplets leads to the formation of complex deposits which are morphologically affected by the environmental conditions, such as temperature. In this work, we examine the effect of substrate temperatures between 20 and 40 °C on the desiccation deposits of fetal bovine serum (FBS) droplets. The final dried deposits consist of different zones: a peripheral protein ring, a zone of protein structures, a protein gel, and a central crystalline zone. We focus on the crystalline zone showing that its morphological and topographical characteristics vary with substrate temperature. The area of the crystalline zone is found to shrink with increasing substrate temperature. Additionally, the morphology of the crystalline structures changes from dendritic at 20 °C to cell-like for substrate temperatures between 25 and 40 °C. Calculation of the thermal and solutal Bénard-Marangoni numbers shows that while thermal effects are negligible when drying takes place at 20 °C, for higher substrate temperatures (25-40 °C), both thermal and solutal convective effects manifest within the drying drops. Thermal effects dominate earlier in the evaporation process leading, we believe, to the development of instabilities and, in turn, to the formation of convective cells in the drying drops. Solutal effects, on the other hand, are dominant toward the end of drying, maintaining circulation within the cells and leading to crystallization of salts in the formed cells. The cell-like structures are considered to form because of the interplay between thermal and solutal convection during drying. Dendritic growth is associated with a thicker fluid layer in the crystalline zone compared to cell-like growth with thinner layers. For cell-like structures, we show that the number of cells increases and the area occupied by each cell decreases with temperature. The average distance between cells decreases linearly with substrate temperature.


Asunto(s)
Desecación , Albúmina Sérica Bovina , Calor , Sales (Química) , Albúmina Sérica Bovina/química , Temperatura
7.
J Colloid Interface Sci ; 612: 792-805, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065463

RESUMEN

Liquid surface tension as well as solid structure play a paramount role on the intimate wetting and non-wetting regimes and interactions between liquids droplets and solid substrates. We hypothesise that the coupling of these two variables, independently addressed in the past, eventually offer a wider range of understanding to the surface science and interfacial communities. In this work, intrinsically hydrophobic micro-pillared surfaces varying in the spacing between structures, and pure ethanol, pure water and their binary mixtures (as well as acetone-water and ethylene glycol-water mixtures) are utilised, accessing a wide range of substrate solid fractions and liquid surface tensions experimentally. Wettability measurements are carried out at different azimuthal directions to exemplify the wetting/non-wetting behaviour as well as the droplet asymmetry function of both liquid composition and structure spacing. Our findings reveal that high water concentration droplets, i.e., high surface tension fluids, sit in the Cassie-Baxter regime while partial non-wetting Wenzel or mixed-mode regimes with enhanced droplet asymmetry ensuing for medium and high ethanol concentrations, i.e., low surface tension fluids, below certain micropillar spacing. Beyond micropillar spacing s ≥ 40 µm, the impact of the surface structure on the droplet shape is negligible, and droplets adopt a similar contact angle and circular shape as on a flat smooth hydrophobic surface. Wetting and non-wetting regimes are then supported by classical wetting theories and equations. A wetting regime map for a wide range of surface tension fluids and/or their mixtures on a wide domain of solid fractions is then proposed.

8.
Nano Lett ; 21(3): 1267-1273, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33494609

RESUMEN

Ultrasonic surface vibration at high frequencies (O(100 GHz)) can nucleate bubbles in a liquid within a few nanometres from a surface, but the underlying mechanism and the role of surface wettability remain poorly understood. Here, we employ molecular simulations to study and characterize this phenomenon, which we call acoustothermal nucleation. We observe that nanobubbles can nucleate on both hydrophilic and hydrophobic surfaces, and molecular energy balances are used to identify whether these are boiling or cavitation events. We rationalize the nucleation events by defining a physics-based energy balance, which matches our simulation results. To characterize the interplay between the acoustic parameters, surface wettability, and nucleation mechanism, we produce a regime map of nanoscopic nucleation events that connects observed nanoscale results to macroscopic experiments. This work provides insights to better design a range of industrial processes and clinical procedures such as surface treatments, mass spectroscopy, and selective cell destruction.

9.
Langmuir ; 36(33): 9728-9737, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32787115

RESUMEN

A sessile droplet of a complex fluid exhibits several stages of drying leading to the formation of a final pattern on the substrate. We report such pattern formation in dehydrating droplets of protein (BSA) and salts (MgCl2 and KCl) at various concentrations of the two components (protein and salts) as part of a parametric study for the understanding of complex patterns of dehydrating biofluid droplets (blood and urine), which will eventually be used for diagnosis of bladder cancer. The exact analysis of the biofluid patterns will require a rigorous parametric study; however, the current work provides an initial understanding of the effect of the basic components present in a biofluid droplet. Arrangement of the protein and the salts, due to evaporation, leads to the formation of some very distinctive final structures at the end of the droplet lifetime. Furthermore, these structures can be manipulated by varying the initial ratio of the two components in the solution. MgCl2 forms chains of crystals beyond a threshold initial concentration of protein (>3 wt %). However, the formation of such a crystal is also limited by the maximum concentration of the salt initially present in the droplet (≤1 wt %). On the other hand, KCl forms dendritic and rectangular crystals in the presence of BSA. The formation of these crystals also depends on the relative concentration of salt and protein in the droplet. We also investigated the dried-out patterns in dehydrating droplets of mixed salts (MgCl2 + KCl) and protein. The patterns can be tuned from a continuous dendritic structure to a snow-flake type structure just by altering the initial ratio of the two salts in the mixture, keeping all other parameters constant.


Asunto(s)
Sales (Química) , Cloruro de Sodio , Desecación , Proteínas
10.
J Bionic Eng ; 17(4): 793-794, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32834809
11.
Langmuir ; 36(18): 4995-5002, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32319295

RESUMEN

Using micro-PIV (particle image velocimetry), we observe for the first time, the direct correlation between crystallization and hydrodynamics in evaporating microliter saline (1 M NaCl) sessile drops. The relationship is demonstrated by a remarkable jet of liquid along the base of the drops, induced by, and directed at the point of nucleation and subsequent crystal growth. Prior to nucleation, the flow is more uniformly outward with the magnitude of the velocity decreasing with time. From calculations and the flow measurements in the two observed stages of evaporation (prior to nucleation and during crystallization), this jet can be explained on the basis of competition between solutal Marangoni convection and mass conservation flow. The jet of fluid leads to vortices on either side of the crystal in which the salt concentration is reduced, providing a potential explanation as to why NaCl deposits as a sequence of discrete crystals rather than as a continuous ring for such drops.

12.
Micromachines (Basel) ; 11(2)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32070019

RESUMEN

In all kinds of liquid desiccant dehumidification systems, the temperature increase of the desiccant solution due to the effect of absorptive heating is one of the main reasons of performance deterioration. In this study, we look into the thermal effects during vapor absorption into single hygroscopic liquid desiccant droplets. Specifically, the effect of substrate conductivity on the transient heat and mass transfer process is analyzed in detail. The relative strength of the thermal effect and the solutal effect on the rate of vapor absorption is investigated and compared to the thermal effect by evaporative cooling taking place in pure water droplets. In the case of liquid desiccants, results indicate that the high thermal conductivity of copper substrates ensures more efficient heat removal, and the temperature at the droplet surface decreases more rapidly than that on Polytetrafluoroethylene (PTFE) substrates. As a result, the initial rate of vapor absorption on copper substrates slightly outweighs that on PTFE substrates. Further analysis by decomposing the vapor pressure difference indicates that the variation of vapor pressure caused by the temperature change during vapor absorption is much weaker than that induced by the concentration change. The conclusions demonstrate that a simplified isothermal model can be applied to capture the main mechanisms during vapor absorption into hygroscopic droplets even though it is evidenced to be unreliable for droplet evaporation.

13.
Langmuir ; 36(1): 204-213, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31860312

RESUMEN

This study investigates the evaporation of sessile pure water and nanosuspension drops on viscoelastic polydimethylsiloxane (PDMS) films. We varied the viscoelasticity of the PDMS films by controlling the curing ratio and categorized them into three types: stiff (10:1, 20:1, 40:1), soft (60:1, 80:1), and very soft (100:1, 120:1, 140:1, 160:1). On stiff surfaces, pure water drops initially evaporate in a constant contact radius (CCR) mode, followed by a constant contact angle mode, and finally in a mixed mode of evaporation. Nanosuspension drops follow the same trend as water drops but with a difference toward the end of their lifetimes, when a short second CCR mode is observed. Complete evaporation of nanosuspension drops on stiff substrates leads to particle deposition patterns similar to a coffee ring with cracks and deposition tails. On soft surfaces, the initial spreading is followed by a pseudo-CCR mode. Complete evaporation of nanosuspension drops on soft substrates leads to deposits in the form of a uniform ring with a sharp ox-horn profile. Unexpectedly, the initial spreading is followed by a mixed mode on very soft substrates, on which wetting ridges (WRs) pulled up by the vertical component of surface tension are clearly observed in the vicinity of the contact line (CL). As the evaporation proceeds, the decreasing contact angle breaks the force balance in the horizontal direction at the CL and gives rise to a net horizontal force, which causes the CL to recede, transferring the horizontal force to the WR. Because of the viscoelastic nature of the very soft substrate, this horizontal force acting on the WR cannot be completely countered by the bulk of the substrate underneath. As a result, the WR moves horizontally in a viscous-flow way, which also enables the CL to be continuously anchored to the ridge and to recede relative to the bulk of the substrate. Consequently, a mixed mode of evaporation occurs. Complete evaporation of nanosuspension drops on very soft substrates leads to finger-like deposits.

14.
Phys Chem Chem Phys ; 21(3): 1046-1058, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30320327

RESUMEN

The study of vapor absorption into liquid desiccant droplets is of general relevance to a better understanding and description of vapor absorption phenomena occurring at the macroscale as well as for practical optimization of dehumidification and refrigeration processes. Hence, in the present work, we provide the first systematic experimental study on the fundamentals of vapor absorption into liquid desiccant at the droplet scale, which initiates a novel avenue for the research of hygroscopic droplet growth. More specifically we address the behavior of lithium bromide-water droplets on hydrophobic PTFE and hydrophilic glass substrates under controlled ambient conditions. Driven by the vapor pressure difference between the ambient air and the droplet interface, desiccant droplets absorb water vapor and increase in volume. To provide further insights on the vapor absorption process, the evolution of the droplet profile is recorded using optical imaging and relevant profile characteristics are extracted. Results show that, even though the final expansion ratio of droplet volume is only a function of relative humidity, the dynamics of contact line and the absorption rate are found to differ greatly when comparing data with varying substrate wettability. Droplets on hydrophilic substrates show higher absorption kinetics and reach equilibrium with the ambient much faster than those on hydrophobic substrates. This is attributed to the absorption process being controlled by solute diffusion on the droplet side and to the shorter characteristic length for the solute diffusion on hydrophilic substrates. Moreover, the apparent droplet spreading process on hydrophilic substrates when compared to hydrophobic ones is explained based on a force balance analysis near the triple contact line, by the change of liquid-vapor surface tension due to the increase in water concentration, and assuming a development of a precursor film.

15.
Soft Matter ; 14(46): 9418-9424, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30427033

RESUMEN

Manipulation of drop motion has attracted considerable attention recently as it is pertinent to industrial/biological applications such as microfluidics. Wettability gradients/contrasts applied to microtextured, superhydrophobic surfaces are probable candidates for engineering drop motion by virtue of their wettability controllability and low contact angle hysteresis. In the present work, we present a systematic study of drop mobility induced via wettability contrasts. A millimetre-sized water drop, placed on the boundary between two surfaces with distinct, uniform arrays of pillars, immediately moved toward the surface more densely populated with asperities, which was relatively more hydrophilic. The velocity of the motion was found to increase proportionally with the difference in pillar densities on each surface, in circumstances where the rear side surface had sufficiently small contact angle hysteresis. To elucidate the underlying mechanism of drop motion, we implemented a surface energy analysis for each motion event. Motion was initiated by the excess surface free energy due to drop deformation and directed in favour of energy minimisation. Lastly, we propose a theory to predict the direction of the drop which at the same time acts as the criterion for the motion to ensue.

16.
Phys Chem Chem Phys ; 20(29): 19430-19440, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-29993049

RESUMEN

The effect of ambient temperature and relative humidity on the dynamics of ethanol drop evaporation is investigated. Although drop evaporation of mixtures and pure fluids has been extensively studied, very little is known about the transition from a pure fluid to a binary mixture following transfer of a second component present in the atmosphere. This is of importance for industrial, biological and medical applications where the purity of the solvent is paramount. Adsorption-absorption and/or condensation of water into ethanol drops during evaporation is presented through direct quantification of the drop composition in time. In particular, we combine drop profile measurements with Gas Injection Chromatography (GIC) to directly quantify the amount of ethanol evaporated and that of water intake over time. As expected, drops evaporate faster at higher temperatures since both the ethanol saturation concentration and the vapor diffusion coefficient are directly proportional to temperature. On the other hand, increases in the ethanol evaporation rate and in the water intake are observed at higher relative humidity. The increase in ethanol evaporation at higher relative humidity is interpreted by the greater diffusion coefficient of ethanol into humid air when compared to dry air. Moreover, as ethanol evaporates in a high humidity environment, the drop interfacial temperature falls below the dew point due to evaporative cooling and water condenses compared to lower humidity conditions. As a consequence of the heat released by adsorption-absorption and/or condensation, a greater temperature is reported at the liquid-vapor interface as confirmed by IR thermography, inducing a greater ethanol saturation concentration at the surface and hence a greater driving force for evaporation. By coupling the drop profile and the composition of ethanol and water within the drop, we propose a combined evaporation-adsorption/absorption and/or condensation empirical correlation. The proposed correlation accounts for: the decreases in ethanol concentration due to water adsorption-absorption and/or condensation, the diffusion coefficient dependence on relative humidity, and the amount of water intake during evaporation. The proposed empirical correlation agrees remarkably well with experimental observations.

17.
Langmuir ; 34(26): 7784-7796, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29757657

RESUMEN

We studied the morphology of poly(styrene- co-butadiene) random copolymers on a graphite surface. Polymer solutions were spin coated onto graphite, at various concentrations and molecular weights. The polymer films and nanostructures were imaged using atomic force microscopy. Above the overlap concentration, thin films formed. However, total wetting did not occur, despite the polymers being well above their Tg. Instead, dewetting was observed, suggesting the films were in a state of metastable equilibrium. At lower concentrations, the polymers formed networks, nanoislands, and nanoribbons. Ordered nanopatterns were observed on the surface; the polymers orientated themselves due to π-π stacking interactions reflecting the crystalline structure of the graphite. At the lowest concentration, this ordering was very pronounced. At higher concentrations, it was less defined but still statistically significant. Higher degrees of ordering were observed with poly(styrene- co-butadiene) than polystyrene and polybutadiene homopolymers as the copolymer's aromatic rings are distributed along a flexible chain, which maximizes π-π stacking. At the two lowest concentrations, the size of the nanoislands and nanoribbons remained similar with varying molecular weight. However, at higher concentrations, the polymer network features were largest at the lowest molecular weight, indicating that in this case, a large proportion of shorter chains stay on top of the adsorbed ones. The contact angles of the polymer nanostructures remained mostly constant with size, which is due to the strong polymer/graphite adhesion dominating over line tension and entropic effects.

18.
Adv Colloid Interface Sci ; 254: 22-47, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29628116

RESUMEN

The formation of patterns after the evaporation of colloidal droplets deposited on a solid surface is an everyday natural phenomenon. During the past two decades, this topic has gained broader audience due to its numerous applications in biomedicine, nanotechnology, printing, coating, etc. This paper presents a detailed review of the experimental studies related to the formation of various deposition patterns from dried droplets of complex fluids (i.e., nanofluids, polymers). First, this review presents the fundamentals of sessile droplet evaporation including evaporation modes and internal flow fields. Then, the most observed dried patterns are presented and the mechanisms behind them are discussed. The review ends with the categorisation and exhaustive investigation of a wide range of factors affecting pattern formation.

19.
Nano Lett ; 18(3): 1869-1874, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29424547

RESUMEN

Fluids confined in a nanoscale space behave differently than in the bulk due to strong interactions between fluid molecules and solid atoms. Here, we observed water confined inside "open" hydrophilized carbon nanotubes (CNT), with diameter of tens of nanometers, using transmission electron microscopy (TEM). A 1-7 nm water film adhering to most of the inner wall surface was observed and remained stable in the high vacuum (order of 10-5 Pa) of the TEM. The superstability of this film was attributed to a combination of curvature, nanoroughness, and confinement resulting in a lower vapor pressure for water and hence inhibiting its vaporization. Occasional, suspended ultrathin water film with thickness of 3-20 nm were found and remained stable inside the CNT. This film thickness is 1 order of magnitude smaller than the critical film thickness (about 40 nm) reported by the Derjaguin-Landau-Verwey-Overbeek theory and previous experimental investigations. The stability of the suspended ultrathin water film is attributed to the additional molecular interactions due to the extended water meniscus, which balances the rest of the disjoining pressures.

20.
Langmuir ; 34(5): 1916-1931, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29336567

RESUMEN

We experimentally studied the spreading dynamics of binary alcohol mixtures (and pure liquids for reference) deposited on a heated substrate in a partially wetting situation under nonisothermal conditions. We show that the spreading mechanism of an evaporating droplet exhibits a power-law growth with early-stage exponents that depend strongly and nonmonotonically on the substrate temperature. Moreover, we investigated the temporal and spatial thermal dynamics in the droplet using infrared thermography, revealing the existence of unique thermal patterns due to thermal and/or solutal instabilities, which lead to surface tension gradients, namely the Marangoni effect. Our key findings are that the temperature of the substrate drastically affects the early-stage inertial-capillary spreading regime owing to the nonmonotonic surface tension-temperature dependence of the self-rewetting liquids. At later stages of wetting, the spreading dynamics enters the viscous-capillary dominated regime, with the characteristic low kinetics mirroring the behavior of pure liquids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...