Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 10: 986987, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186600

RESUMEN

The race for environmentally-safe pesticides and biocides has been showing solutions ranging from pest-pathologic microorganisms to safer botanical extracts that can be incorporated in several formulations. Often linked to high biological activities, fruit residues can be recovered from food processing factories to obtain complex extracts enriched with several bioactive chemicals. Mango (Mangifera indica) fruits are processed into food products in high volumes across the globe and generate a consistent residue that contains, among others, the xanthonoid mangiferin and the flavonoid hyperoside. Both compounds have been linked to several pharmacological and pesticidal activities, although not yet studied for algicidal applications, a current concern specially for antifouling and harmful algae blooms control products. The challenge lies, however, not only on the degree of activity of the natural compounds, but also on the processes necessary to separate, isolate and formulate the bioactive compounds in order to obtain an effective final product. The solvent choice plays an important part regarding the selectivity of the separation and isolation of the main bioactive compounds from the solid waste matrix. Ethanolic mixtures in water have been consolidated recently as a promising extraction medium for flavonoids and xanthonoids, although hindered by solubility limitations. In this paper, aqueous solutions of ionic liquids (ILs) were tested, screened and optimized using Box-Behnken design and Response Surface Methodology to obtain mangiferin and hyperoside-enriched extracts. Results showed a greater concentration of mangiferin and hyperoside with 1-octyl-3-methylimidazolium chloride ([C8MIm] Cl), when compared to choline acetate and ethanolic extracts using optimized parameters. In terms of sufficiency, solvent selection between ILs and ethanolic extraction media was discussed considering economic and environmental factors. Ethanol/water mango waste extracts were then studied for their activity against Raphidocelis subcapitata microalgae, which showed a higher growth inhibition in comparison to standard solutions of mangiferin and hyperoside, either individually and in a 1:1 mixture. A EC50 value was found in relative low concentrations of mangiferin and hyperoside (0.015 mg L-1) detected in the extract, showcasing a promising approach to the direct use of residuary plant extracts in biocidal formulations.

2.
Sci Total Environ ; 824: 153781, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35176375

RESUMEN

Biopesticides obtained from renewable resources and associated with biodegradability have the potential to address resource limitations and environmental pollution, often caused by many conventional pesticides, due to the facility of natural products to run in natural nutrient cycles. Flavonoids are considered benign substitutes for pesticides, however, little comprehensive information of their pesticidal activities and critical evaluation of their associated advantages is available. Therefore, this systematic review assessed sources, structures, activities and the environmental fate of flavonoids on a basis of 201 selected publications. We identified 281 different flavonoids that were investigated for their pesticidal activity as either a pure compound or a flavonoid-containing extract, with quercetin, kaempferol, apigenin, luteolin and their glycosides as the most studied compounds. Agricultural or food waste, a potential sustainable source for flavonoids, represent 10.6% of the plant sources of flavonoids within these studies, showing the currently underutilization of these preferable feedstocks. Analysis of pesticidal activities and target organisms revealed a broad target spectrum for the class of flavonoids, including fungi, insects, plants, bacteria, algae, nematodes, molluscs and barnacles. Little information is available on the environmental fate and biodegradation of flavonoids, and a connection to studies investigating pesticidal activities is largely missing. Emerging from these findings is the need for comprehensive understanding of flavonoids pesticidal activities with emphasis on structural features that influence activity and target specificity to avoid risks for non-target organisms. Only if the target spectrum and environmental fate of a potential biopesticide are known it can serve as a benign substitute. Then, flavonoids can be integrated in a valorization process of agricultural and food waste shifting the extract-produce-consume linear chain to a more circular economy.


Asunto(s)
Plaguicidas , Eliminación de Residuos , Agentes de Control Biológico , Flavonoides , Alimentos , Plaguicidas/análisis , Plantas
3.
Macromol Rapid Commun ; 36(8): 774-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25721151

RESUMEN

Bio-derived polysaccharide aerogels are of interest for a broad range of applications. To date, these aerogels have been obtained through the time- and solvent-intensive procedure of hydrogel fomation, solvent exchange, and scCO2 drying, which offers little control over meso/macropore distribution. A simpler and more versatile route is developed, using freeze drying to produce highly mesoporous polysaccharide aerogels with various degrees of macroporosity. The hierarchical pore distribution is controlled by addition of different quantities of t-butanol (TBA) to hydrogels before drying. Through a systematic study an interesting relationship between the mesoporosity and t-butanol/water phase diagram is found, linking mesoporosity maxima with eutectic points for all polysaccharides studied (pectin, starch, and alginic acid). Moreover, direct gelation of polysaccharides in aqueous TBA offers additional time savings and the potential for solvent reuse. This finding is a doorway to more accessible polysaccharide aerogels for research and industrial scale production, due to the widespread accessibility of the freeze drying technology and the simplicity of the method.


Asunto(s)
Hidrogeles/síntesis química , Polisacáridos/química , Alcohol terc-Butílico/química , Desecación , Liofilización , Hidrogeles/química , Ensayo de Materiales , Polisacáridos/síntesis química , Porosidad , Estrés Mecánico , Propiedades de Superficie , Temperatura , Resistencia a la Tracción , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...