Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Lab Chip ; 21(17): 3307-3315, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34286805

RESUMEN

CMOS-MEMS microresonators have become excellent candidates for developing portable chemical VOC sensing systems thanks to their extremely large mass sensitivity, extraordinary miniaturization capabilities, and on-chip integration with CMOS circuitry to operate as a self-sustained oscillator. This paper presents two 4-anchored MEMS plate resonators, with a resonance frequency of 2.2 MHz and 380 kHz, fabricated together with the required circuitry using a commercial 0.35 µm CMOS technology and then coated with poly-4-vinylheduorocumyl alcohol (P4V) via inkjet deposition. Such P4V constitutes a functionalization layer for specific acetone detection as a key step in the development of an integrated device for non-invasive diabetes diagnosis through exhaled human breath. The coated sensor system has been proven to increase the acetone injection response by 6-times compared to the uncoated platform and shows a cross-sensitivity to butane of 1 : 11. Experimental data show an acetone sensitivity of -0.012 ppm Hz-1 in the best case that, together with a measured frequency Allan deviation of 0.32 ppm, provides an expected limit of detection as low as 20 ppb of acetone. Additionally, this work presents an alternative resonator design with folded flexure anchors that provide a drastic reduction of the sensor temperature sensitivity and mitigate the impact of a fluid flow inherent to the calibration system.


Asunto(s)
Sistemas Microelectromecánicos , Compuestos Orgánicos Volátiles , Acetona , Espiración , Humanos , Polímeros
2.
Micromachines (Basel) ; 12(1)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467477

RESUMEN

CMOS-MEMS resonators have become a promising solution thanks to their miniaturization and on-chip integration capabilities. However, using a CMOS technology to fabricate microelectromechanical system (MEMS) devices limits the electromechanical performance otherwise achieved by specific technologies, requiring a challenging readout circuitry. This paper presents a transimpedance amplifier (TIA) fabricated using a commercial 0.35-µm CMOS technology specifically oriented to drive and sense monolithically integrated CMOS-MEMS resonators up to 50 MHz with a tunable transimpedance gain ranging from 112 dB to 121 dB. The output voltage noise is as low as 225 nV/Hz1/2-input-referred current noise of 192 fA/Hz1/2-at 10 MHz, and the power consumption is kept below 1-mW. In addition, the TIA amplifier exhibits an open-loop gain independent of the parasitic input capacitance-mostly associated with the MEMS layout-representing an advantage in MEMS testing compared to other alternatives such as Pierce oscillator schemes. The work presented includes the characterization of three types of MEMS resonators that have been fabricated and experimentally characterized both in open-loop and self-sustained configurations using the integrated TIA amplifier. The experimental characterization includes an accurate extraction of the electromechanical parameters for the three fabricated structures that enables an accurate MEMS-CMOS circuitry co-design.

3.
Sensors (Basel) ; 20(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32824963

RESUMEN

Based on experimental data, this paper thoroughly investigates the impact of a gas fluid flow on the behavior of a MEMS resonator specifically oriented to gas sensing. It is demonstrated that the gas stream action itself modifies the device resonance frequency in a way that depends on the resonator clamp shape with a corresponding non-negligible impact on the gravimetric sensor resolution. Results indicate that such an effect must be accounted when designing MEMS resonators with potential applications in the detection of volatile organic compounds (VOCs). In addition, the impact of thermal perturbations was also investigated. Two types of four-anchored CMOS-MEMS plate resonators were designed and fabricated: one with straight anchors, while the other was sustained through folded flexure clamps. The mechanical structures were monolithically integrated together with an embedded readout amplifier to operate as a self-sustained fully integrated oscillator on a commercial CMOS technology, featuring low-cost batch production and easy integration. The folded flexure anchor resonator provided a flow impact reduction of 5× compared to the straight anchor resonator, while the temperature sensitivity was enhanced to -115 ppm/°C, an outstanding result compared to the -2403 ppm/°C measured for the straight anchored structure.

4.
Micromachines (Basel) ; 10(4)2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022846

RESUMEN

Micro and nanoelectromechanical system (M/NEMS) devices constitute key technological building blocks to enable increased additional functionalities within integrated circuits (ICs) in the More-Than-Moore era, as described in the International Technology Roadmap for Semiconductors [...].

5.
Micromachines (Basel) ; 9(10)2018 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-30424417

RESUMEN

This paper presents the design, fabrication, and electrical characterization of an electrostatically actuated and capacitive sensed 2-MHz plate resonator structure that exhibits a predicted mass sensitivity of ~250 pg·cm-2·Hz-1. The resonator is embedded in a fully on-chip Pierce oscillator scheme, thus obtaining a quasi-digital output sensor with a short-term frequency stability of 1.2 Hz (0.63 ppm) in air conditions, corresponding to an equivalent mass noise floor as low as 300 pg·cm-2. The monolithic CMOS-MEMS sensor device is fabricated using a commercial 0.35-µm 2-poly-4-metal complementary metal-oxide-semiconductor (CMOS) process, thus featuring low cost, batch production, fast turnaround time, and an easy platform for prototyping distributed mass sensors with unprecedented mass resolution for this kind of devices.

6.
Sensors (Basel) ; 18(9)2018 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-30223610

RESUMEN

We analyzed experimentally the noise characteristics of fully integrated CMOS-MEMS resonators to determine the overall thermomechanical noise and its impact on the limit of detection at the system level. Measurements from four MEMS resonator geometries designed for ultrasensitive detection operating between 2-MHz and 8-MHz monolithically integrated with a low-noise CMOS capacitive readout circuit were analyzed and used to determine the resolution achieved in terms of displacement and capacitance variation. The CMOS-MEMS system provides unprecedented detection resolution of 11 yF·Hz-1/2 equivalent to a minimum detectable displacement (MDD) of 13 fm·Hz-1/2, enabling noise characterization that is experimentally demonstrated by thermomechanical noise detection and compared to theoretical model values.

7.
PLoS One ; 13(8): e0201793, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30071092

RESUMEN

Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell dyscrasia that can progress to malignant multiple myeloma (MM). Specific molecular biomarkers to classify the MGUS status and discriminate the initial asymptomatic phase of MM have not been identified. We examined the serum peptidome profile of MGUS patients and healthy volunteers using MALDI-TOF mass spectrometry and developed a predictive model for classifying serum samples. The predictive model was built using a support vector machine (SVM) supervised learning method tuned by applying a 20-fold cross-validation scheme. Predicting class labels in a blinded test set containing randomly selected MGUS and healthy control serum samples validated the model. The generalization performance of the predictive model was evaluated by a double cross-validation method that showed 88% average model accuracy, 89% average sensitivity and 86% average specificity. Our model, which classifies unknown serum samples as belonging to either MGUS patients or healthy individuals, can be applied to clinical diagnosis.


Asunto(s)
Pruebas Hematológicas/métodos , Gammopatía Monoclonal de Relevancia Indeterminada/sangre , Proteoma , Suero/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Control de Calidad , Sensibilidad y Especificidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Máquina de Vectores de Soporte , Adulto Joven
8.
PLoS One ; 10(9): e0135199, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26353114

RESUMEN

BACKGROUND: The electronic nose (e-nose) detects volatile organic compounds (VOCs) in exhaled air. We hypothesized that the exhaled VOCs print is different in stable vs. exacerbated patients with chronic obstructive pulmonary disease (COPD), particularly if the latter is associated with airway bacterial infection, and that the e-nose can distinguish them. METHODS: Smell-prints of the bacteria most commonly involved in exacerbations of COPD (ECOPD) were identified in vitro. Subsequently, we tested our hypothesis in 93 patients with ECOPD, 19 of them with pneumonia, 50 with stable COPD and 30 healthy controls in a cross-sectional case-controlled study. Secondly, ECOPD patients were re-studied after 2 months if clinically stable. Exhaled air was collected within a Tedlar bag and processed by a Cynarose 320 e-nose. Breath-prints were analyzed by Linear Discriminant Analysis (LDA) with "One Out" technique and Sensor logic Relations (SLR). Sputum samples were collected for culture. RESULTS: ECOPD with evidence of infection were significantly distinguishable from non-infected ECOPD (p = 0.018), with better accuracy when ECOPD was associated to pneumonia. The same patients with ECOPD were significantly distinguishable from stable COPD during follow-up (p = 0.018), unless the patient was colonized. Additionally, breath-prints from COPD patients were significantly distinguished from healthy controls. Various bacteria species were identified in culture but the e-nose was unable to identify accurately the bacteria smell-print in infected patients. CONCLUSION: E-nose can identify ECOPD, especially if associated with airway bacterial infection or pneumonia.


Asunto(s)
Bacterias/aislamiento & purificación , Infecciones Bacterianas/complicaciones , Infecciones Bacterianas/diagnóstico , Nariz Electrónica , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Compuestos Orgánicos Volátiles/análisis , Anciano , Bacterias/química , Infecciones Bacterianas/microbiología , Pruebas Respiratorias/instrumentación , Estudios de Casos y Controles , Estudios Transversales , Diseño de Equipo , Espiración , Femenino , Humanos , Pulmón/microbiología , Masculino , Persona de Mediana Edad , Neumonía/complicaciones , Neumonía/diagnóstico , Neumonía/microbiología
9.
BMJ Open ; 3(12): e003836, 2013 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-24381254

RESUMEN

OBJECTIVES: We performed a re-analysis of the data from Navarro et al (2003) in which health symptoms related to microwave exposure from mobile phone base stations (BSs) were explored, including data obtained in a retrospective inquiry about fear of exposure from BSs. DESIGN: Cross-sectional study. SETTING: La Ñora (Murcia), Spain. PARTICIPANTS: Participants with known illness in 2003 were subsequently disregarded: 88 participants instead of 101 (in 2003) were analysed. Since weather circumstances can influence exposure, we restricted data to measurements made under similar weather conditions. OUTCOMES AND METHODS: A statistical method indifferent to the assumption of normality was employed: namely, binary logistic regression for modelling a binary response (eg, suffering fatigue (1) or not (0)), and so exposure was introduced as a predictor variable. This analysis was carried out on a regular basis and bootstrapping (95% percentile method) was used to provide more accurate CIs. RESULTS: The symptoms most related to exposure were lack of appetite (OR=1.58, 95% CI 1.23 to 2.03); lack of concentration (OR=1.54, 95% CI 1.25 to 1.89); irritability (OR=1.51, 95% CI 1.23 to 1.85); and trouble sleeping (OR=1.49, 95% CI 1.20 to 1.84). Changes in -2 log likelihood showed similar results. Concerns about the BSs were strongly related with trouble sleeping (OR =3.12, 95% CI 1.10 to 8.86). The exposure variable remained statistically significant in the multivariate analysis. The bootstrapped values were similar to asymptotic CIs. CONCLUSIONS: This study confirms our preliminary results. We observed that the incidence of most of the symptoms was related to exposure levels-independently of the demographic variables and some possible risk factors. Concerns about adverse effects from exposure, despite being strongly related with sleep disturbances, do not influence the direct association between exposure and sleep.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...