Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38931388

RESUMEN

Melanoma, primarily caused by solar ultraviolet (UV) radiation, can be prevented by the use of sunscreens. However, the use of synthetic sunscreens raises environmental concerns. Natural compounds with antioxidant photoprotective properties and cytotoxic effects against cancer cells can be promising for the prevention and treatment of melanoma with less environmental effect. This study focuses on Melaleuca leucadendron essential oil (EO) for photoprotection and antitumor applications. EO was hydrodistilled from M. leucadendron leaves with a 0.59% yield. Gas chromatography-mass spectrometry detected monoterpenes and sesquiterpenes. Nanoemulsions were prepared with (NE-EO) and without EO (NE-B) using the phase inversion method, showing good stability, spherical or oval morphology, and a pseudoplastic profile. Photoprotective activity assessed spectrophotometrically showed that the NE-EO was more effective than NE-B and free EO. Antioxidant activity evaluated by DPPH and ABTS methods indicated that pure and nanoemulsified EO mainly inhibited the ABTS radical, showing IC50 40.72 and 5.30 µg/mL, respectively. Cytotoxicity tests on L-929 mouse fibroblasts, NGM human melanocyte, B16-F10 melanoma, and MeWo human melanoma revealed that EO and NE-EO were more cytotoxic to melanoma cells than to non-tumor cells. The stable NE-EO demonstrates potential for melanoma prevention and treatment. Further research is required to gain a better understanding of these activities.

2.
Pharmaceutics ; 16(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38931824

RESUMEN

The treatment of skin and soft tissue infections (SSTIs) can be challenging due to bacterial resistance, particularly from strains like MRSA and biofilm formation. However, combining conventional antibiotics with natural products shows promise in treating SSTIs. The objective of this study is to develop a nanoemulsion-based hydrogel containing Protium spruceanum extract and mupirocin and evaluate its potential for the treatment of SSTIs. The nanoemulsion was obtained by phase inversion and subsequently characterized. The antibacterial activity was evaluated in vitro against S. aureus MRSA, including the synergism of the combination, changes in membrane permeability using flow cytometry, and the anti-biofilm effect. In addition, the irritative potential was evaluated by the HET-CAM assay. The combination exhibited synergistic antibacterial activity against S. aureus and MRSA due to the extract enhancing membrane permeability. The hydrogel demonstrated suitable physicochemical properties, inhibited biofilm formation, and exhibited low irritation. The formulation was nanometric (176.0 ± 1.656 nm) and monodisperse (polydispersity index 0.286 ± 0.011). It exhibited a controlled release profile at 48 h and high encapsulation efficacy (94.29 ± 4.54% for quercitrin and 94.20 ± 5.44% for mupirocin). Therefore, these findings suggest that the hydrogel developed could be a safe and effective option for treating SSTIs.

3.
Molecules ; 28(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38067542

RESUMEN

Chagas disease (CD) is a worldwide public health problem, and the drugs available for its treatment have severe limitations. Red propolis is a natural extract known for its high content of phenolic compounds and for having activity against T. cruzi. The aim of this study was to investigate the trypanocidal potential of red propolis to isolate, identify, and indicate the mode of action of the bioactive compounds. The results revealed that the total phenolic content was 15.4 mg GAE/g, and flavonoids were 7.2 mg QE/g. The extract was fractionated through liquid-liquid partitioning, and the trypanocidal potential of the samples was evaluated using the epimastigote forms of the Y strain of T. cruzi. In this process, one compound was characterized by MS, 1H, and 13C NMR and identified as vestitol. Cytotoxicity was evaluated employing MRC-5 fibroblasts and H9C2 cardiomyocytes, showing cytotoxic concentrations above 15.62 µg/mL and 31.25 µg/mL, respectively. In silico analyses were applied, and the data suggested that the substance had a membrane-permeation-enhancing effect, which was confirmed through an in vitro assay. Finally, a molecular docking analysis revealed a higher affinity of vestitol with farnesyl diphosphate synthase (FPPS). The identified isoflavan appears to be a promising lead compound for further development to treat Chagas disease.


Asunto(s)
Enfermedad de Chagas , Própolis , Tripanocidas , Trypanosoma cruzi , Humanos , Própolis/química , Simulación del Acoplamiento Molecular , Enfermedad de Chagas/tratamiento farmacológico , Flavonoides/química , Extractos Vegetales/farmacología , Tripanocidas/química
4.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982196

RESUMEN

Many activities have been described for propolis, including, antiviral, antibacterial, antifungal, anti-inflammatory, immunoregulatory, antioxidant and wound healing properties. Recently, propolis has been highlighted due to its potential application in the pharmaceutical and cosmetic industries, motivating a better understanding of its antioxidant and anti-inflammatory activities. Propolis and its main polyphenolic compounds presented high antioxidant activity, and effectiveness as broad spectrum UVB and UVA photoprotection sunscreens. Through a qualitative phytochemical screening, the ethanolic red propolis extracts (EEPV) (70% at room temperature and 70% at a hot temperature) presented a positive result for flavonoids and terpenoids. It presented an antioxidant activity for reducing 50% of DPPH of 17 and 12 µg/mL for extraction at room temperature and at a hot temperature, respectively. The UPLC-QTOF-MS/MS analysis allowed the annotation of 40 substances for EEPV-Heated and 42 substances for EEPV-Room Temperature. The IC50 results of the ABTS scavenging activity was 4.7 µg/mL for both extractions, at room temperature and at a hot temperature. Additionally, we also evaluated the cytotoxic profile of propolis extracts against macrophage (RAW 264.7 cells) and keratinocytes (HaCaT cells), which showed non-cytotoxic doses in cell viability assays even after a long period of exposure. In addition, propolis extracts showed antibacterial activity for Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), demonstrating potential biological activity for the creation of formulations aimed at disease control and prevention.


Asunto(s)
Antiinfecciosos , Ascomicetos , Própolis , Própolis/farmacología , Própolis/química , Antioxidantes/farmacología , Antioxidantes/química , Protectores Solares/farmacología , Espectrometría de Masas en Tándem , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinflamatorios/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/química
5.
Mini Rev Med Chem ; 22(9): 1232-1255, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34720079

RESUMEN

The broad pharmacological spectrum of plants is related to their secondary metabolism, which is responsible for the synthesis of different compounds that have multiple effects on cellular physiology. Among the biological effects presented by phytochemicals, their use for the prevention and treatment of cancer can be highlighted. This occurs due to several mechanisms of antitumor action demonstrated by these compounds, including regulation of the cell signaling pathways and inhibition of tumor growth. In this way, long non-coding RNAs (lncRNAs) appear to be promising targets for the treatment of cancer. Their deregulation has already been related to a variety of clinicalpathological parameters. However, the effects of secondary metabolites on lncRNAs are still restricted. For this reason, the present review aimed to gather data on phytochemicals with action on lncRNAs in order to confirm their possible antitumor potential. According to the literature, terpenoid and flavonoid are the main examples of secondary metabolites involved with lncRNAs activity. In addition, the lncRNAs H19, CASC2, HOTAIR, NKILA, CCAT1, MALAT1, AFAP1-AS1, MEG3, and CDKN2B-AS1 can be highlighted as important targets in the search for new anti-tumor agents since they act as modulating pathways related to cell proliferation, cell cycle, apoptosis, cell migration and invasion. Finally, challenges for the use of natural products as a commercial drug were also discussed. The low yield, selectivity index and undesirable pharmacokinetic parameters were emphasized as a difficulty for obtaining these compounds on a large scale and for improving the potency of its biological effect. However, the synthesis and/or development of formulations were suggested as a possible approach to solve these problems. All of these data together confirm the potential of secondary metabolites as a source of new anti-tumor agents acting on lncRNAs.


Asunto(s)
Antineoplásicos , Neoplasias , ARN Largo no Codificante , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/patología , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/farmacología
6.
Phytochem Rev ; 20(5): 1013-1032, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867898

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China and its spread worldwide has become one of the biggest health problem due to the lack of knowledge about an effective chemotherapy. Based on the current reality of the SARS-CoV-2 pandemic, this study aimed to make a review literature about potential anti-coronavirus natural compounds guided by an in silico study. In the first step, essential oils from native species found in the Brazilian herbal medicine market and Brazilian species that have already shown antiviral potential were used as source for the literature search and compounds selection. Among these compounds, 184 showed high antiviral potential against rhinovirus or picornavirus by quantitative structure-activity relationship analysis. (E)-α-atlantone; 14-hydroxy-α-muurolene; allo-aromadendrene epoxide; amorpha-4,9-dien-2-ol; aristochene; azulenol; germacrene A; guaia-6,9-diene; hedycaryol; humulene epoxide II; α-amorphene; α-cadinene; α-calacorene and α-muurolene showed by a molecular docking study the best result for four target proteins that are essential for SARS-CoV-2 lifecycle. In addition, other parameters obtained for the selected compounds indicated low toxicity and showed good probability to achieve cell permeability and be used as a drug. These results guided the second literature search which included other species in addition to native Brazilian plants. The majority presence of any of these compounds was reported for essential oils from 45 species. In view of the few studies relating essential oils and antiviral activity, this review is important for future assays against the new coronavirus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11101-021-09754-4.

7.
Nat Prod Res ; 35(23): 5238-5242, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32241181

RESUMEN

The aim of this study was to analyse the antitumor effect of the Cymbopogon densiflorus essential oil in silico and in vitro on bladder cancer cells RT4 and T24, with different TP53 status. The oil was extracted by hydrodistillation and the gas chromatography coupled to the mass spectrometry was used for characterisation. In silico analysis was carried out by Pass online software. Cytotoxicity, cell proliferation, cell cycle progression, apoptosis and wound healing assays were performed. Five major compounds were identified. In silico analysis showed that major compounds present high potential for antitumor activities. The treatment with C. densiflorus essential oil reduced cell viability of bladder cancer cells. Only in wild-type cells, the increase of apoptosis rates and the decrease of cell migration were observed. In conclusion, the C. densiflorus essential oil presents antitumor effects on TP53 wild-type and mutated bladder cancer cells, however, the mechanism of action is TP53 status-dependent.[Figure: see text].


Asunto(s)
Cymbopogon , Aceites Volátiles , Neoplasias de la Vejiga Urinaria , Apoptosis , Cromatografía de Gases y Espectrometría de Masas , Humanos , Aceites Volátiles/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
8.
Phytother Res ; 34(1): 94-103, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31713305

RESUMEN

The research for new treatments of skin and soft tissue infections (SSTIs) is important due to their high prevalence and number of hospitalizations. The purpose of this review is to address the pathophysiology of SSTIs to highlight the advantages of herbal medicines to their treatment, showing examples of species and compounds with multi-targets action. SSTIs have a complex physiopathology involving the microorganism, as well as inflammation and difficult healing. Therefore, antimicrobial, anti-inflammatory, antioxidant and healing activities are an approach possible for their treatment. Herbal medicines have a wide diversity of biological compounds, mainly phenolic compounds that may act on different targets and also have synergism between them. Therefore, a single medicine may have the four key activities that allied allow eliminating the infection, control the inflammation process and accelerating the healing process, preventing complications with chronic infections.


Asunto(s)
Medicina de Hierbas/métodos , Plantas Medicinales/química , Enfermedades de la Piel/tratamiento farmacológico , Infecciones de los Tejidos Blandos/tratamiento farmacológico , Humanos
9.
Braz. J. Pharm. Sci. (Online) ; 56: e18411, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1132049

RESUMEN

Antimicrobial and antitumor activities of resveratrol, a compound found mainly in grapes, have already been demonstrated. However, its low bioavailability is a limiting factor for therapeutic application. Polymeric micelles can be an approach to solve this problem since they can encapsulate hydrophobic substances. We developed and characterized micellar formulations containing resveratrol and evaluated their cytotoxic and antimicrobial effects. The formulations were prepared by the cold dispersion method with different concentrations of F127 (5 or 10% w/w) and resveratrol (500 or 5000 µM). The formulations were characterized according to size, polydispersity index, pH, encapsulation rate and in vitro release. Cytotoxic effect was evaluated on a bladder cancer cell line and antimicrobial effect was evaluated on E. coli, S. aureus and C. albicans. One of the formulations (10% w/w of F127 and 5000 µM of resveratrol) was a monodispersed solution with high encapsulation rate, thus it was chosen for the cytotoxicity and antimicrobial assays. MS- 10+RES-3 was able to preserve the antimicrobial and cytotoxic activity of resveratrol. This is the first study that evaluated antimicrobial potential and cytotoxicity of micelles containing resveratrol on bladder cancer cells and the results showed that micellar nanostructures could ensure the maintenance of the biological activity of resveratrol.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Células , Resveratrol/análisis , Neoplasias/patología , Soluciones/administración & dosificación , Técnicas In Vitro/instrumentación , Línea Celular/clasificación , Vitis/clasificación , Concentración de Iones de Hidrógeno , Micelas
10.
Braz. J. Pharm. Sci. (Online) ; 56: e18474, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1249171

RESUMEN

Due to the increase of bacterial resistance, the search for new antibiotics is necessary and the medicinal plants represent its most important source. The aim of this study was to evaluate the antibacterial property of extract and fractions from Protium spruceanum leaves, against pathogenic bacteria. By means of diffusion and microdilution assays, the crude extract was active against the nine bacteria tested being the hydromethanolic fraction the most active. During phytochemical procedures, procyanidin (1) and catechin (2) were identified as the main antibacterial constituents of this fraction. In silico results obtained using PASSonline tool indicated 1 and 2 as having good potential to interact with different targets of currently used antibiotics. These results no indicated potential to none DNA effect and indicated the cell wall as mainly target. Electrophoresis result supported that had no DNA damage. Cell wall damage was confirmed by propidium iodide test that showed increased membrane permeability and by cell surface deformations observed in scanning electronic microscopy. The in vitro assays together with the in silico prediction results establish the potential of P. spruceanum as source of antibacterial compounds that acts on important bacterial targets. These results contribute to the development of natural substances against pathogenic bacteria and to discovery of new antibiotics.


Asunto(s)
Plantas Medicinales/efectos adversos , Técnicas In Vitro/métodos , Extractos Vegetales/análisis , Catequina , Antibacterianos/análisis , Simulación por Computador , Microscopía Electrónica de Rastreo/métodos , Hojas de la Planta/clasificación , Burseraceae/clasificación , Fitoquímicos
11.
J Ethnopharmacol ; 241: 112024, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31181316

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Protium spruceanum (Burseraceae) is used in Brazilian traditional medicine as anti-inflammatory, but the factors involved in this activity were not yet characterized. AIMS OF THE STUDY: analyze the aspects involved in the anti-inflammatory activity of polar fractions obtained from extracts of leaves and branches. MATERIALS AND METHODS: Hydromethanolic fraction was obtained by liquid-liquid partition from crude ethanolic extract and its compounds were identified by LC-DAD-MS. Activity tests were performed using LPS + IFN-γ stimulated J774A.1 macrophages. Cytokines were evaluated by CBA kit, NO by Griess method, ROS by DCFH-DA, N-acetylglucosaminidase (NAG) activity by spectrophotometric method, matrix-metalloproteinase (MMP-9) activity by zymography, inducible nitric oxide synthase (iNOS) expression by immunofluorescence and cyclooxygenase (COX-2) expression by Western blot. RESULTS: Fractions induced an increase of IL-6 and IL-10 which leads to the control of pro-inflammatory cytokines levels. The treatment with the fractions also reduced NO production at all concentrations tested in all evaluated periods. ROS production by the macrophages was inhibited by the treatment and the leaves fraction showed the best results with a lower concentration than that observed for the branches. The enzymes assays showed that leaves fraction inhibited NAG and MMP-9 activities, as well as, iNOS and COX-2 expression. These activities can be associated with the presence of procyanidin, catechin, rutin, quercitrin, isoquercitrin and kaempferol-3-O-rhamnoside, major compounds that were identified in the fraction. CONCLUSIONS: Anti-inflammatory activity of P. spruceanum is associated to an immunomodulatory effect that leads to inhibition of ROS, NO, NAG, MMP-9, COX-2 and iNOS.


Asunto(s)
Antiinflamatorios/farmacología , Burseraceae , Extractos Vegetales/farmacología , Acetilglucosaminidasa/metabolismo , Animales , Línea Celular , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Inmunomodulación/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Hojas de la Planta , Tallos de la Planta , Especies Reactivas de Oxígeno/metabolismo
12.
Food Chem ; 287: 61-67, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-30857719

RESUMEN

Propolis has demonstrated potential use as food preservative but it presents strong and unpleasant flavor that alters the sensory characteristics foods. A nanoemulsion was proposed to carry the Brazilian propolis extracts for use as natural food preservative. Antimicrobial and antioxidant activities and chemical constituents of the extracts were investigated. The latter were made by sequential extraction using different solvents (hexane, ethyl acetate and ethanol). Antimicrobial activity was evaluated by agar diffusion and microdilution methods and antioxidant activity by DPPH and ABTS assays. Extracts showed antibacterial and antioxidant activity, highlighting the ethanolic which contained artepillin-C, kaempferide, drupanin and p-coumaric acid as main compounds by LC-MS analysis. The nanoemulsion developed by phase inversion method was characterized and stable under thermal-stress and centrifugation conditions. Biological properties evaluated were effectively maintained by the formulation. It was concluded that the nanoemulsion can be used as a food preservative, preventing degradation and masking the propolis off-flavor.


Asunto(s)
Antiinfecciosos , Antioxidantes , Conservantes de Alimentos , Própolis , Antiinfecciosos/análisis , Antiinfecciosos/química , Antioxidantes/análisis , Antioxidantes/química , Emulsiones/análisis , Emulsiones/química , Conservantes de Alimentos/análisis , Conservantes de Alimentos/química , Nanotecnología , Própolis/análisis , Própolis/química
13.
Nat Prod Res ; 32(16): 1951-1954, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28726498

RESUMEN

The crude ethanol extract (CEE) and fractions from branches of Protium spruceanum were subjected to antibacterial and cytotoxicity assays. Compounds of the most active fraction were identified by GC-MS and LC-MS. CEE was active against 19 bacteria and the ethyl acetate fraction (EAF) showed the lowest minimum bactericidal concentration (MBC 0.3-80.0 mg/mL). Through time-kill assay was observed that EAF induced rapid bactericidal effect against Staphylococcus saprophyticus. The cytotoxicity tests against L929 fibroblasts showed great potential of EAF on the treatment of infections caused by five bacteria (MBC < IC50). The results provide in vitro scientific support to the possible application of branches of P. spruceanum as antimicrobial agent that may contribute for treatment of infections.


Asunto(s)
Antibacterianos/farmacología , Burseraceae/química , Extractos Vegetales/farmacología , Animales , Bacterias/efectos de los fármacos , Burseraceae/toxicidad , Fibroblastos/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/toxicidad , Staphylococcus saprophyticus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...