Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 47(5): 1813-1833, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321806

RESUMEN

Increasingly frequent and intense heatwaves threaten ecosystem health in a warming climate. However, plant responses to heatwaves are poorly understood. A key uncertainty concerns the intensification of transpiration when heatwaves suppress photosynthesis, known as transpiration-photosynthesis decoupling. Field observations of such decoupling are scarce, and the underlying physiological mechanisms remain elusive. Here, we use carbonyl sulphide (COS) as a leaf gas exchange tracer to examine potential mechanisms leading to transpiration-photosynthesis decoupling on a coast live oak in a southern California woodland in spring 2013. We found that heatwaves suppressed both photosynthesis and leaf COS uptake but increased transpiration or sustained it at non-heatwave levels throughout the day. Despite statistically significant decoupling between transpiration and photosynthesis, stomatal sensitivity to environmental factors did not change during heatwaves. Instead, midday photosynthesis during heatwaves was restricted by internal diffusion, as indicated by the lower internal conductance to COS. Thus, increased evaporative demand and nonstomatal limitation to photosynthesis act jointly to decouple transpiration from photosynthesis without altering stomatal sensitivity. Decoupling offered limited potential cooling benefits, questioning its effectiveness for leaf thermoregulation in xeric ecosystems. We suggest that adding COS to leaf and ecosystem flux measurements helps elucidate diverse physiological mechanisms underlying transpiration-photosynthesis decoupling.


Asunto(s)
Ecosistema , Transpiración de Plantas , Óxidos de Azufre , Transpiración de Plantas/fisiología , Hojas de la Planta/fisiología , Fotosíntesis/fisiología , Agua/fisiología
2.
New Phytol ; 235(5): 1729-1742, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35478172

RESUMEN

Carbonyl sulfide (COS) has emerged as a multi-scale tracer for terrestrial photosynthesis. To infer ecosystem-scale photosynthesis from COS fluxes often requires knowledge of leaf relative uptake (LRU), the concentration-normalized ratio between leaf COS uptake and photosynthesis. However, current mechanistic understanding of LRU variability remains inadequate for deriving robust COS-based estimates of photosynthesis. We derive a set of closed-form equations to describe LRU responses to light, humidity and CO2 based on the Ball-Berry stomatal conductance model and the biochemical model of photosynthesis. This framework reproduces observed LRU responses: decreasing LRU with increasing light or decreasing humidity; it also predicts that LRU increases with ambient CO2 . By fitting the LRU equations to flux measurements on a C3 reed (Typha latifolia), we obtain physiological parameters that control LRU variability, including an estimate of the Ball-Berry slope of 7.1 without using transpiration measurements. Sensitivity tests reveal that LRU is more sensitive to photosynthetic capacity than to the Ball-Berry slope, indicating stomatal response to photosynthesis. This study presents a simple framework for interpreting observed LRU variability and upscaling LRU. The stoma-regulated LRU response to CO2 suggests that COS may offer a unique window into long-term stomatal acclimation to elevated CO2 .


Asunto(s)
Dióxido de Carbono , Ecosistema , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Óxidos de Azufre
3.
Funct Plant Biol ; 48(7): 732-742, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34099101

RESUMEN

The distributions of CAM and C3 epiphytic bromeliads across an altitudinal gradient in western Panama were identified from carbon isotope (δ13C) signals, and epiphyte water balance was investigated via oxygen isotopes (δ18O) across wet and dry seasons. There were significant seasonal differences in leaf water (δ18Olw), precipitation, stored 'tank' water and water vapour. Values of δ18Olw were evaporatively enriched at low altitude in the dry season for the C3 epiphytes, associated with low relative humidity (RH) during the day. Crassulacean acid metabolism (CAM) δ18Olw values were relatively depleted, consistent with water vapour uptake during gas exchange under high RH at night. At high altitude, cloudforest locations, C3 δ18Olw also reflected water vapour uptake by day. A mesocosm experiment with Tillandsia fasciculata (CAM) and Werauhia sanguinolenta (C3) was combined with simulations using a non-steady-state oxygen isotope leaf water model. For both C3 and CAM bromeliads, δ18Olw became progressively depleted under saturating water vapour by day and night, although evaporative enrichment was restored in the C3 W. sanguinolenta under low humidity by day. Source water in the overlapping leaf base 'tank' was also modified by evaporative δ18O exchanges. The results demonstrate how stable isotopes in leaf water provide insights for atmospheric water vapour exchanges for both C3 and CAM systems.


Asunto(s)
Vapor , Agua , Isótopos de Oxígeno , Panamá , Hojas de la Planta
4.
Proc Natl Acad Sci U S A ; 111(25): 9064-9, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24927594

RESUMEN

Net photosynthesis is the largest single flux in the global carbon cycle, but controls over its variability are poorly understood because there is no direct way of measuring it at the ecosystem scale. We report observations of ecosystem carbonyl sulfide (COS) and CO2 fluxes that resolve key gaps in an emerging framework for using concurrent COS and CO2 measurements to quantify terrestrial gross primary productivity. At a wheat field in Oklahoma we found that in the peak growing season the flux-weighted leaf relative uptake of COS and CO2 during photosynthesis was 1.3, at the lower end of values from laboratory studies, and varied systematically with light. Due to nocturnal stomatal conductance, COS uptake by vegetation continued at night, contributing a large fraction (29%) of daily net ecosystem COS fluxes. In comparison, the contribution of soil fluxes was small (1-6%) during the peak growing season. Upland soils are usually considered sinks of COS. In contrast, the well-aerated soil at the site switched from COS uptake to emissions at a soil temperature of around 15 °C. We observed COS production from the roots of wheat and other species and COS uptake by root-free soil up to a soil temperature of around 25 °C. Our dataset demonstrates that vegetation uptake is the dominant ecosystem COS flux in the peak growing season, providing support of COS as an independent tracer of terrestrial photosynthesis. However, the observation that ecosystems may become a COS source at high temperature needs to be considered in global modeling studies.


Asunto(s)
Ecosistema , Modelos Biológicos , Raíces de Plantas/metabolismo , Óxidos de Azufre/metabolismo , Triticum/metabolismo , Oklahoma , Raíces de Plantas/crecimiento & desarrollo , Triticum/crecimiento & desarrollo
5.
Rapid Commun Mass Spectrom ; 26(2): 141-53, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22173802

RESUMEN

Concern exists about the suitability of laser spectroscopic instruments for the measurement of the (18)O/(16)O and (2)H/(1)H values of liquid samples other than pure water. It is possible to derive erroneous isotope values due to optical interference by certain organic compounds, including some commonly present in ecosystem-derived samples such as leaf or soil waters. Here we investigated the reliability of wavelength-scanned cavity ring-down spectroscopy (CRDS) (18)O/(16)O and (2)H/(1)H measurements from a range of ecosystem-derived waters, through comparison with isotope ratio mass spectrometry (IRMS). We tested the residual of the spectral fit S(r) calculated by the CRDS instrument as a means to quantify the difference between the CRDS and IRMS δ-values. There was very good overall agreement between the CRDS and IRMS values for both isotopes, but differences of up to 2.3‰ (δ(18)O values) and 23‰ (δ(2)H values) were observed in leaf water extracts from Citrus limon and Alnus cordata. The S(r) statistic successfully detected contaminated samples. Treatment of Citrus leaf water with activated charcoal reduced, but did not eliminate, δ(2)H(CRDS) - δ(2)H(IRMS) linearly for the tested range of 0-20% charcoal. The effect of distillation temperature on the degree of contamination was large, particularly for δ(2)H values but variable, resulting in positive, negative or no correlation with distillation temperature. S(r) and δ(CRDS) - δ(IRMS) were highly correlated, in particular for δ(2)H values, across the range of samples that we tested, indicating the potential to use this relationship to correct the δ-values of contaminated plant water extracts. We also examined the sensitivity of the CRDS system to changes in the temperature of its operating environment. We found that temperature changes ≥4 °C for δ(18)O values and ≥10 °C for δ(2)H values resulted in errors larger than the CRDS precision for the respective isotopes and advise the use of such instruments only in sufficiently temperature-stabilised environments.

6.
Rapid Commun Mass Spectrom ; 24(24): 3553-61, 2010 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-21080508

RESUMEN

Recently available isotope ratio infrared spectroscopy can directly measure the isotopic composition of atmospheric water vapour (δ(18) O, δ(2) H), overcoming one of the main limitations of isotope ratio mass spectrometry (IRMS) methods. Calibrating these gas-phase instruments requires the vapourisation of liquid standards since primary standards in principle are liquids. Here we test the viability of calibrating a wavelength-scanned cavity ring-down spectroscopy (CRDS) instrument with vapourised liquid standards. We also quantify the dependency of the measured isotope values on the water concentration for a range of isotopic compositions. In both liquid and vapour samples, we found an increase in δ(18) O and δ(2) H with water vapour concentration. For δ(18) O, the slope of this increase was similar for liquid and vapour, with a slight positive relationship with sample δ-value. For δ(2) H, we found diverging patterns for liquid and vapour samples, with no dependence on δ-value for vapour, but a decreasing slope for liquid samples. We also quantified tubing memory effects to step changes in isotopic composition, avoiding concurrent changes in the water vapour concentration. Dekabon tubing exhibited much stronger, concentration-dependent, memory effects for δ(2) H than stainless steel or perfluoroalkoxy (PFA) tubing. Direct vapour measurements with CRDS in a controlled experimental chamber agreed well with results obtained from vapour simultaneously collected in cold traps analysed by CRDS and IRMS. We conclude that vapour measurements can be calibrated reliably with liquid standards. We demonstrate how to take the concentration dependencies of the δ-values into account. Copyright © 2010 John Wiley & Sons, Ltd.

7.
Proc Natl Acad Sci U S A ; 106(52): 22411-5, 2009 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-20018776

RESUMEN

Improved global estimates of terrestrial photosynthesis and respiration are critical for predicting the rate of change in atmospheric CO(2). The oxygen isotopic composition of atmospheric CO(2) can be used to estimate these fluxes because oxygen isotopic exchange between CO(2) and water creates distinct isotopic flux signatures. The enzyme carbonic anhydrase (CA) is known to accelerate this exchange in leaves, but the possibility of CA activity in soils is commonly neglected. Here, we report widespread accelerated soil CO(2) hydration. Exchange was 10-300 times faster than the uncatalyzed rate, consistent with typical population sizes for CA-containing soil microorganisms. Including accelerated soil hydration in global model simulations modifies contributions from soil and foliage to the global CO(18)O budget and eliminates persistent discrepancies existing between model and atmospheric observations. This enhanced soil hydration also increases the differences between the isotopic signatures of photosynthesis and respiration, particularly in the tropics, increasing the precision of CO(2) gross fluxes obtained by using the delta(18)O of atmospheric CO(2) by 50%.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/química , Isótopos de Oxígeno/análisis , Microbiología del Suelo , Anhidrasas Carbónicas/metabolismo , Cambio Climático , Modelos Biológicos , Estaciones del Año
8.
Isotopes Environ Health Stud ; 45(4): 343-59, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20183242

RESUMEN

The flux (R(s)) and carbon isotopic composition (delta(13)C (Rs)) of soil respired CO (2) was measured every 2 h over the course of three diel cycles in a Mediterranean oak woodland, together with measurements of the delta(13)C composition of leaf, root and soil organic matter (delta(13)C (SOM)) and metabolites. Simulations of R(s) and delta(13)C (Rs) were also made using a numerical model parameterised with the SOM data and assuming short-term production rates were driven mainly by temperature. Average values of delta(13)C (Rs) over the study period were within the range of root metabolite and average delta(13)C (SOM) values, but enriched in (13)C relative to the bulk delta(13)C of leaf, litter, and roots and the upper soil organic layers. There was good agreement between model output and observed CO (2) fluxes and the underlying features of delta(13)C (Rs). Observed diel variations of 0.5 per thousand in delta(13)C (Rs) were predicted by the model in response to temperature-related shifts in production rates along a approximately 3 per thousand gradient observed in the profile of delta(13)C (SOM). However, observed delta(13)C (Rs) varied by over 2 per thousand, indicating that both dynamics in soil respiratory metabolism and physical processes can influence short-term variability of delta(13)C (Rs).


Asunto(s)
Dióxido de Carbono/química , Isótopos de Carbono/química , Quercus , Suelo , Biodegradación Ambiental , Dióxido de Carbono/metabolismo , Ecosistema , Región Mediterránea , Fotosíntesis , Hojas de la Planta , Microbiología del Suelo , Temperatura
9.
Plant Physiol ; 148(4): 2013-20, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18923019

RESUMEN

The magnitude of fractionation during photorespiration and the effect on net photosynthetic (13)C discrimination (Delta) were investigated for three Senecio species, S. squalidus, S. cineraria, and S. greyii. We determined the contributions of different processes during photosynthesis to Delta by comparing observations (Delta(obs)) with discrimination predicted from gas-exchange measurements (Delta(pred)). Photorespiration rates were manipulated by altering the O(2) partial pressure (pO(2)) in the air surrounding the leaves. Contributions from (13)C-depleted photorespiratory CO(2) were largest at high pO(2). The parameters for photorespiratory fractionation (f), net fractionation during carboxylation by Rubisco and phosphoenolpyruvate carboxylase (b), and mesophyll conductance (g(i)) were determined simultaneously for all measurements. Instead of using Delta(obs) data to obtain g(i) and f successively, which requires that b is known, we treated b, f, and g(i) as unknowns. We propose this as an alternative approach to analyze measurements under field conditions when b and g(i) are not known or cannot be determined in separate experiments. Good agreement between modeled and observed Delta was achieved with f = 11.6 per thousand +/- 1.5 per thousand, b = 26.0 per thousand +/- 0.3 per thousand, and g(i) of 0.27 +/- 0.01, 0.25 +/- 0.01, and 0.22 +/- 0.01 mol m(-2) s(-1) for S. squalidus, S. cineraria, and S. greyii, respectively. We estimate that photorespiratory fractionation decreases Delta by about 1.2 per thousand on average under field conditions. In addition, diurnal changes in Delta are likely to reflect variations in photorespiration even at the canopy level. Our results emphasize that the effects of photorespiration must be taken into account when partitioning net CO(2) exchange of ecosystems into gross fluxes of photosynthesis and respiration.


Asunto(s)
Carbono/metabolismo , Fotosíntesis , Senecio/metabolismo , Carbono/química , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Fraccionamiento Químico , Oxígeno/metabolismo , Presión Parcial , Fosfoenolpiruvato Carboxilasa/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo
10.
Philos Trans R Soc Lond B Biol Sci ; 363(1504): 2767-78, 2008 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-18487135

RESUMEN

A comparative study has been made of the photosynthetic physiological ecology and carbon isotope discrimination characteristics for modern-day bryophytes and closely related algal groups. Firstly, the extent of bryophyte distribution and diversification as compared with more advanced land plant groups is considered. Secondly, measurements of instantaneous carbon isotope discrimination (Delta), photosynthetic CO(2) assimilation and electron transport rates were compared during the drying cycles. The extent of surface diffusion limitation (when wetted), internal conductance and water use efficiency (WUE) at optimal tissue water content (TWC) were derived for liverworts and a hornwort from contrasting habitats and with differing degrees of thallus ventilation (as intra-thalline cavities and internal airspaces). We also explore how the operation of a biophysical carbon-concentrating mechanism (CCM) tempers isotope discrimination characteristics in two other hornworts, as well as the green algae Coleochaete orbicularis and Chlamydomonas reinhardtii. The magnitude of Delta was compared for each life form over a drying curve and used to derive the surface liquid-phase conductance (when wetted) and internal conductance (at optimal TWC). The magnitude of external and internal conductances, and WUE, was higher for ventilated, compared with non-ventilated, liverworts and hornworts, but the values were similar within each group, suggesting that both factors have been optimized for each life form. For the hornworts, leakiness of the CCM was highest for Megaceros vincentianus and C. orbicularis (approx. 30%) and, at 5%, lowest in C. reinhardtii grown under ambient CO2 concentrations. Finally, evidence for the operation of a CCM in algae and hornworts is considered in terms of the probable role of the chloroplast pyrenoid, as the origins, structure and function of this enigmatic organelle are explored during the evolution of land plants.


Asunto(s)
Evolución Biológica , Briófitas/fisiología , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Chlorophyta/fisiología , Ecosistema , Modelos Biológicos , Fotosíntesis
11.
Oecologia ; 155(3): 441-54, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18224341

RESUMEN

We revisit the relationship between plant water use efficiency and carbon isotope signatures (delta(13)C) of plant material. Based on the definitions of intrinsic, instantaneous and integrated water use efficiency, we discuss the implications for interpreting delta(13)C data from leaf to landscape levels, and across diurnal to decadal timescales. Previous studies have often applied a simplified, linear relationship between delta(13)C, ratios of intercellular to ambient CO(2) mole fraction (C (i)/C (a)), and water use efficiency. In contrast, photosynthetic (13)C discrimination (Delta) is sensitive to the ratio of the chloroplast to ambient CO(2) mole fraction, C (c)/C (a) (rather than C (i)/C (a)) and, consequently, to mesophyll conductance. Because mesophyll conductance may differ between species and over time, it is not possible to determine C (c)/C (a) from the same gas exchange measurements as C (i)/C (a). On the other hand, water use efficiency at the leaf level depends on evaporative demand, which does not directly affect Delta. Water use efficiency and Delta can thus vary independently, making it difficult to obtain trends in water use efficiency from delta(13)C data. As an alternative approach, we offer a model available at http://carbonisotopes.googlepages.com to explore how water use efficiency and (13)C discrimination are related across leaf and canopy scales. The model provides a tool to investigate whether trends in Delta indicate changes in leaf functional traits and/or environmental conditions during leaf growth, and how they are associated with trends in plant water use efficiency. The model can be used, for example, to examine whether trends in delta(13)C signatures obtained from tree rings imply changes in tree water use efficiency in response to atmospheric CO(2) increase. This is crucial for predicting how plants may respond to future climate change.


Asunto(s)
Isótopos de Carbono/metabolismo , Modelos Biológicos , Fotosíntesis/fisiología , Plantas/metabolismo , Agua/metabolismo , Ecosistema , Modelos Lineales , Especificidad de la Especie , Factores de Tiempo
12.
Plant Cell Environ ; 30(5): 600-16, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17407538

RESUMEN

We report diurnal variations in (13)C discrimination ((13)Delta) of Picea sitchensis (Bong.) Carr. branches measured in the field using a branch chamber technique. The observations were compared to predicted (13)Delta based on concurrent measurements of branch gas exchange. Observed (13)Delta values were described well by the classical model of (13)Delta including isotope effects during photorespiration, day respiration and CO(2) transfer through a series of resistances to the sites of carboxylation. A simplified linear of model (13)Delta did not capture the observed diurnal variability. At dawn and dusk, we measured very high (13)Delta values that were not predicted by either of the said models. Exploring the sensitivity of (13)Delta to possible respiratory isotope effects, we conclude that isotopic disequilibria between the gross fluxes of photosynthesis and day respiration can explain the high observed (13)Delta values during net photosynthetic gas exchange. Based on the classical model, a revised formulation incorporating an isotopically distinct substrate for day respiration was able to account well for the high observed dawn and dusk (13)Delta values.


Asunto(s)
Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Picea/metabolismo , Agua/metabolismo , Respiración de la Célula/fisiología , Ritmo Circadiano/fisiología , Microclima , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...