Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Analyst ; 149(10): 2978-2987, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38602145

RESUMEN

Cultivation-independent molecular biological methods are essential to rapidly quantify pathogens like Legionella pneumophila (L. pneumophila) which is important to control aerosol-generating engineered water systems. A standard addition method was established to quantify L. pneumophila in the very complex matrix of process water and air of exhaust air purification systems in animal husbandry. Therefore, cryopreserved standards of viable L. pneumophila were spiked in air and water samples to calibrate the total bioanalytical process which includes cell lysis, DNA extraction, and qPCR. A standard addition algorithm was employed for qPCR to determine the initial concentration of L. pneumophila. In mineral water, the recovery rate of this approach (73%-134% within the concentration range of 100-5000 Legionella per mL) was in good agreement with numbers obtained from conventional genomic unit (GU) calibration with DNA standards. In air samples of biotrickling filters, in contrast, the conventional DNA standard approach resulted in a significant overestimation of up to 729%, whereas our standard addition gave a more realistic recovery of 131%. With this proof-of-principle study, we were able to show that the molecular biology-based standard addition approach is a suitable method to determine realistic concentrations of L. pneumophila in air and process water samples of biotrickling filter systems. Moreover, this quantification strategy is generally a promising method to quantify pathogens in challenging samples containing a complex microbiota and the classical GU approach used for qPCR leads to unreliable results.


Asunto(s)
Legionella pneumophila , Reacción en Cadena en Tiempo Real de la Polimerasa , Legionella pneumophila/aislamiento & purificación , Legionella pneumophila/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Filtración/métodos , Filtración/instrumentación , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , ADN Bacteriano/análisis , Microbiología del Agua , Microbiología del Aire
2.
Nano Lett ; 23(22): 10532-10537, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37917860

RESUMEN

Key requirements for quantum plasmonic nanocircuits are reliable single-photon sources, high coupling efficiency to the plasmonic structures, and low propagation losses. Self-assembled epitaxially grown GaAs quantum dots are close to ideal as stable, bright, and narrowband single-photon emitters. Likewise, wet-chemically grown monocrystalline silver nanowires are among the best plasmonic waveguides. However, large propagation losses of surface plasmons on the high-index GaAs substrate prevent their direct combination. Here, we show by experiment and simulation that the best overall performance of the quantum plasmonic nanocircuit based on these building blocks is achieved in the intermediate field regime with an additional spacer layer between the quantum dot and the plasmonic waveguide. High-resolution cathodoluminescence measurements allow a precise determination of the coupling distance and support a simple analytical model to explain the overall performance. The coupling efficiency is increased up to four times by standing wave interference near the end of the waveguide.

3.
Biosensors (Basel) ; 13(7)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37504069

RESUMEN

Protein biomarkers in nasal secretions can be used as a measure to differentiate between allergies, airway diseases and infections for non-invasive diagnostics. The point-of-care quantification of biomarker levels using flow-based microarray facilitates precise and rapid diagnosis and displays the potential for targeted and effective treatment. For the first time, we developed a flow-based chemiluminescence sandwich microarray immunoassay (CL-SMIA) for the quantification of nasal interferon-beta (IFN-ß) on the Microarray Chip Reader-Research (MCR-R). Polycarbonate foils are used as a cost-effective surface for immobilizing capture antibodies. By using a commercially available set of anti-human IFN-ß antibodies, the CL-SMIA can be compared directly to an enzyme-linked immunosorbent assay (ELISA) performed in microtiter plates concerning the bioanalytical performance and economic issues. Pre-incubation of the sample with detection antibodies facilitates the lower consumption of detection antibodies, as this allows for a longer interaction time between the antibody and the biomarker. The direct injection of pre-incubated samples into the microarray chips eliminates the adsorption of proteins in the tubing as well as the contamination of the tubing and valves of the MCR-R with clinical samples. The small flow cell allows for a low sample volume of 50 µL. The limit of detection of 4.53 pg mL-1 was slightly increased compared to a sandwich ELISA performed on microtiter plates which were 1.60 pg mL-1. The possibility to perform the CL-SMIA in a multiplexed mode makes it a promising assay for the rapid and cost-effective non-invasive detection of biomarkers in nasal secretions.


Asunto(s)
Anticuerpos , Inmunoensayo , Ensayo de Inmunoadsorción Enzimática , Biomarcadores/análisis , Análisis de Secuencia por Matrices de Oligonucleótidos
4.
PLoS Genet ; 19(6): e1010819, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37339150

RESUMEN

C-di-GMP is a bacterial second messenger that regulates diverse processes in response to environmental or cellular cues. The nucleoid-associated protein (NAP) CdbA in Myxococcus xanthus binds c-di-GMP and DNA in a mutually exclusive manner in vitro. CdbA is essential for viability, and CdbA depletion causes defects in chromosome organization, leading to a block in cell division and, ultimately, cell death. Most NAPs are not essential; therefore, to explore the paradoxical cdbA essentiality, we isolated suppressor mutations that restored cell viability without CdbA. Most mutations mapped to cdbS, which encodes a stand-alone c-di-GMP binding PilZ domain protein, and caused loss-of-function of cdbS. Cells lacking CdbA and CdbS or only CdbS were fully viable and had no defects in chromosome organization. CdbA depletion caused post-transcriptional upregulation of CdbS accumulation, and this CdbS over-accumulation was sufficient to disrupt chromosome organization and cause cell death. CdbA depletion also caused increased accumulation of CsdK1 and CsdK2, two unusual PilZ-DnaK chaperones. During CdbA depletion, CsdK1 and CsdK2, in turn, enabled the increased accumulation and toxicity of CdbS, likely by stabilizing CdbS. Moreover, we demonstrate that heat stress, possibly involving an increased cellular c-di-GMP concentration, induced the CdbA/CsdK1/CsdK2/CdbS system, causing a CsdK1- and CsdK2-dependent increase in CdbS accumulation. Thereby this system accelerates heat stress-induced chromosome mis-organization and cell death. Collectively, this work describes a unique system that contributes to regulated cell death in M. xanthus and suggests a link between c-di-GMP signaling and regulated cell death in bacteria.


Asunto(s)
Proteínas Bacterianas , Myxococcus xanthus , Proteínas Bacterianas/metabolismo , Myxococcus xanthus/genética , Proteínas Portadoras/genética , Chaperonas Moleculares/genética , Muerte Celular , Cromosomas/metabolismo , GMP Cíclico/metabolismo , Unión Proteica
5.
Anal Bioanal Chem ; 415(21): 5139-5149, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37204446

RESUMEN

Legionella pneumophila are pathogenic bacteria that can be found in high concentrations in artificial water systems like evaporative cooling towers, which have been the source of frequent outbreaks in recent years. Since inhaled L. pneumophila can lead to Legionnaires' disease, the development of suitable sampling and rapid analysis strategies for these bacteria in aerosols is therefore of great relevance. In this work, different concentrations of viable L. pneumophila Sg 1 were nebulized and sampled by the cyclone sampler Coriolis® µ under defined conditions in a bioaerosol chamber. To quantify intact Legionella cells, the collected bioaerosols were subsequently analyzed by immunomagnetic separation coupled with flow cytometry (IMS-FCM) on the platform rqmicro.COUNT. For analytical comparison, measurements with qPCR and cultivation were performed. Limits of detection (LOD) of 2.9 × 103 intact cells m-3 for IMS-FCM and 7.8 × 102 intact cells m-3 for qPCR indicating a comparable sensitivity as in culture (LOD = 1.5 × 103 culturable cells m-3). Over a working range of 103 - 106 cells mL-1, the analysis of nebulized and collected aerosol samples with IMS-FCM and qPCR provides higher recovery rates and more consistent results than by cultivation. Overall, IMS-FCM is a suitable culture-independent method for quantification of L. pneumophila in bioaerosols and is promising for field application due to its simplicity in sample preparation.


Asunto(s)
Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Separación Inmunomagnética/métodos , Citometría de Flujo , Aerosoles y Gotitas Respiratorias , Enfermedad de los Legionarios/microbiología , Microbiología del Agua
6.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047104

RESUMEN

Extracellular vesicles (EVs) have enormous potential for the implementation of liquid biopsy and as effective drug delivery means, but the fulfilment of these expectations requires overcoming at least two bottlenecks relative to their purification, namely the finalization of reliable and affordable protocols for: (i) EV sub-population selective isolation and (ii) the scalability of their production/isolation from complex biological fluids. In this work, we demonstrated that these objectives can be achieved by a conceptually new affinity chromatography platform composed of a macroporous epoxy monolith matrix functionalized with anti-CD63 nanobodies with afflux of samples and buffers regulated through a pump. Such a system successfully captured and released integral EVs from urine samples and showed negligible unspecific binding for circulating proteins. Additionally, size discrimination of eluted EVs was achieved by different elution approaches (competitive versus pH-dependent). The physical characteristics of monolith material and the inexpensive production of recombinant nanobodies make scaling-up the capture unit feasible and affordable. Additionally, the availability of nanobodies for further specific EV biomarkers will allow for the preparation of monolithic affinity filters selective for different EV subclasses.


Asunto(s)
Líquidos Corporales , Vesículas Extracelulares , Anticuerpos de Dominio Único , Biomarcadores/metabolismo , Líquidos Corporales/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Anticuerpos de Dominio Único/metabolismo , Tetraspanina 30
7.
Sci Total Environ ; 878: 162917, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36934949

RESUMEN

This study assessed black carbon (BC) dynamics, concentrations, and the organic matter (OM) isotopic carbon composition in northeastern South America drainage basin coastal sediments. Paraíba do Sul (PSR; Atlantic Rainforest, Brazil) coastal sediments displayed more 13C-enriched values (-22.6 ± 1.3 ‰ [n = 13]) than Amazon and Sinnamary (Amazon Rainforest in French Guiana and Brazil) sediments (-25.0 ± 3.1 ‰ [n = 14] and - 26.1 ± 1.0 ‰ [n = 6], respectively), indicating that local land-use basin changes have altered the OM composition, i.e., from natural C3 plant to C4 plants contributions. BC contents normalized to total organic carbon (TOC) content were 0.32 ± 0.24 (n = 8), 0.73 ± 0.67 (n = 6), and 0.95 ± 0.74 (n = 13) mg g-1 TOC for Amazon, Sinnamary and PSR samples, respectively, with BC sources appearing to differ according to different drainage basin vegetation covers. With increasing distance from the river mouths, BC contents exhibited different trends between the coastal zones, with values increasing for the PSR and decreasing values for the Amazon samples. BC distribution in Sinnamary coastal sediments did not display specific patterns. Regarding the Amazon coastal zone, BC contents decreased while the B6CA:B5CA ratios did not show a pattern, which could indicate that BC in the area originates from river transport (aged BC) and that the hydrophobic component of dissolved BC is removed. The BC content mostly increased in the PSR coastal zone, while the B6CA:B5CA ratios were not altered for the entire gradient, indicating the BC stability and possible atmospheric deposition of soot. Our findings indicate that different sources, transformation processes, and hydrological conditions affect BC contents within coastal zones. Continuous land cover changes in both the Amazon and Atlantic Rainforests may result in large-scale marine carbon cycling impacts.

8.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36679480

RESUMEN

Previous studies investigating multi-sensor fusion for the collection of soil information have shown variable improvements, and the underlying prediction mechanisms are not sufficiently understood for spectrally-active and -inactive properties. Our objective was to study prediction mechanisms and benefits of model fusion by measuring mid-infrared (MIR) and X-ray fluorescence (XRF) spectra, texture, total and labile organic carbon (OC) and nitrogen (N) content, pH, and cation exchange capacity (CEC) for n = 117 soils from an arable field in Germany. Partial least squares regression models underwent a three-fold training/testing procedure using MIR spectra or elemental concentrations derived from XRF spectra. Additionally, two sequential hybrid and two high-level fusion approaches were tested. For the studied field, MIR was superior for organic properties (ratio of prediction to interquartile distance of validation (RPIQV) for total OC = 7.7 and N = 5.0)), while XRF was superior for inorganic properties (RPIQV for clay = 3.4, silt = 3.0, and sand = 1.8). Even the optimal fusion approach brought little to no accuracy improvement for these properties. The high XRF accuracy for clay and silt is explained by the large number of elements with variable importance in the projection scores >1 (Fe ≈ Ni > Si ≈ Al ≈ Mg > Mn ≈ K ≈ Pb (clay only) ≈ Cr) with strong spearman correlations (±0.57 < rs < ±0.90) with clay and silt. For spectrally-inactive properties relying on indirect prediction mechanisms, the relative improvements from the optimal fusion approach compared to the best single spectrometer were marginal for pH (3.2% increase in RPIQV versus MIR alone) but more pronounced for labile OC (9.3% versus MIR) and CEC (12% versus XRF). Dominance of a suboptimal spectrometer in a fusion approach worsened performance compared to the best single spectrometer. Granger-Ramanathan averaging, which weights predictions according to accuracy in training, is therefore recommended as a robust approach to capturing the potential benefits of multiple sensors.


Asunto(s)
Suelo , Suelo/química , Arcilla , Rayos X , Fluorescencia , Alemania
9.
Anal Bioanal Chem ; 415(3): 391-404, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36346456

RESUMEN

The SARS-CoV-2 pandemic has shown the importance of rapid and comprehensive diagnostic tools. While there are numerous rapid antigen tests available, rapid serological assays for the detection of neutralizing antibodies are and will be needed to determine not only the amount of antibodies formed after infection or vaccination but also their neutralizing potential, preventing the cell entry of SARS-CoV-2. Current active-virus neutralization assays require biosafety level 3 facilities, while virus-free surrogate assays are more versatile in applications, but still take typically several hours until results are available. To overcome these disadvantages, we developed a competitive chemiluminescence immunoassay that enables the detection of neutralizing SARS-CoV-2 antibodies within 7 min. The neutralizing antibodies bind to the viral receptor binding domain (RBD) and inhibit the binding to the human angiotensin-converting enzyme 2 (ACE2) receptor. This competitive binding inhibition test was characterized with a set of 80 samples, which could all be classified correctly. The assay results favorably compare to those obtained with a more time-intensive ELISA-based neutralization test and a commercial surrogate neutralization assay. Our test could further be used to detect individuals with a high total IgG antibody titer, but only a low neutralizing titer, as well as for monitoring neutralizing antibodies after vaccinations. This effective performance in SARS-CoV-2 seromonitoring delineates the potential for the test to be adapted to other diseases in the future.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/diagnóstico , Ensayo de Inmunoadsorción Enzimática , Inmunoensayo , Luminiscencia , Automatización de Laboratorios
10.
Sensors (Basel) ; 22(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36433201

RESUMEN

Affinity describes the non-covalent but selective interaction between an affinity binder (e.g., proteins, antibiotics, or antibodies) and its counterpart (e.g., bacteria). These affinity binders can serve to detect bacteria and respond to the need for selective concentration via affinity chromatography for trace analysis. By changing the pH value or salt and protein contents, affinity bindings can be reversed, and bacteria can be recovered for characterisation. Analytical microarrays use multiple affinity binders immobilised on the surface in a distinct pattern, which immensely reduces screening time for the discovery of superior binding motifs. Here, flow-based microarray systems can inform not only about binding, but also about desorption. In this work, we pioneer a screening assay for affinity binders against both gram-positive and negative bacteria based on an automated flow-based chemiluminescence (CL) microarray. Biotinylation of model organisms E. coli and E. faecalis enabled labelling with horseradish-peroxidase-coupled streptavidin, and detection with CL. Polymyxin B, an antibiotic against gram-negative bacteria, was found to bind both E. coli and E. faecalis. Simultaneous screening for desorption methods unexpectedly revealed methyl alpha-D-mannopyranoside as a promising buffer for desorption from Polymyxin B. This proof-of-principle study shows that our new platform greatly facilitates the screening of new affinity binders against bacteria, with promise for future automation.


Asunto(s)
Escherichia coli , Luminiscencia , Polimixina B , Análisis por Micromatrices , Anticuerpos , Antibacterianos
11.
Proc Natl Acad Sci U S A ; 119(41): e2209152119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36201540

RESUMEN

Marine dissolved organic matter (DOM) is a major reservoir that links global carbon, nitrogen, and phosphorus. DOM is also important for marine sulfur biogeochemistry as the largest water column reservoir of organic sulfur. Dissolved organic sulfur (DOS) can originate from phytoplankton-derived biomolecules in the surface ocean or from abiotically "sulfurized" organic matter diffusing from sulfidic sediments. These sources differ in 34S/32S isotope ratios (δ34S values), with phytoplankton-produced DOS tracking marine sulfate (21‰) and sulfurized DOS mirroring sedimentary porewater sulfide (∼0 to -10‰). We measured the δ34S values of solid-phase extracted (SPE) DOM from marine water columns and porewater from sulfidic sediments. Marine DOMSPE δ34S values ranged from 14.9‰ to 19.9‰ and C:S ratios from 153 to 303, with lower δ34S values corresponding to higher C:S ratios. Marine DOMSPE samples showed consistent trends with depth: δ34S values decreased, C:S ratios increased, and δ13C values were constant. Porewater DOMSPE was 34S-depleted (∼-0.6‰) and sulfur-rich (C:S ∼37) compared with water column samples. We interpret these trends as reflecting at most 20% (and on average ∼8%) contribution of abiotic sulfurized sources to marine DOSSPE and conclude that sulfurized porewater is not a main component of oceanic DOS and DOM. We hypothesize that heterogeneity in δ34S values and C:S ratios reflects the combination of sulfurized porewater inputs and preferential microbial scavenging of sulfur relative to carbon without isotope fractionation. Our findings strengthen links between oceanic sulfur and carbon cycling, supporting a realization that organic sulfur, not just sulfate, is important to marine biogeochemistry.


Asunto(s)
Materia Orgánica Disuelta , Azufre , Carbono , Nitrógeno/análisis , Fósforo , Fitoplancton , Sulfatos/análisis , Sulfuros , Isótopos de Azufre , Agua
12.
Sci Adv ; 8(31): eabm2249, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35930637

RESUMEN

Dissolved organic matter (DOM) is a distinct component of Earth's hydrosphere and provides a link between the biogeochemical cycles of carbon, nutrients, and trace metals (TMs). Binding of TMs to DOM is thought to result in a TM pool with DOM-like biogeochemistry. Here, we determined elemental stoichiometries of aluminum, iron, copper, nickel, zinc, cobalt, and manganese associated with a fraction of the DOM pool isolated by solid-phase extraction at ambient pH (DOMSPE-amb) from the Amazon plume. We found that the rank order of TM stoichiometry within the DOMSPE-amb fraction was underpinned by the chemical periodicity of the TM. Furthermore, the removal of the TMSPE-amb pool at low salinity was related to the chemical hardness of the TM ion. Thus, the biogeochemistry of TMs bound to the DOMSPE-amb component in the Amazon plume was determined by the chemical nature of the TM and not by that of the DOMSPE-amb.

13.
Front Microbiol ; 13: 863686, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694303

RESUMEN

Viruses are ubiquitously distributed in the marine environment, influencing microbial population dynamics and biogeochemical cycles on a large scale. Due to their small size, they fall into the oceanographic size-class definition of dissolved organic matter (DOM; <0.7 µm). The purpose of our study was to investigate if there is a detectable imprint of virus particles in natural DOM following standard sample preparation and molecular analysis routines using ultrahigh-resolution mass spectrometry (FT-ICR-MS). Therefore, we tested if a molecular signature deriving from virus particles can be detected in the DOM fingerprint of a bacterial culture upon prophage induction and of seawater containing the natural microbial community. Interestingly, the virus-mediated lysate of the infected bacterial culture differed from the cell material of a physically disrupted control culture in its molecular composition. Overall, a small subset of DOM compounds correlated significantly with virus abundances in the bacterial culture setup, accounting for <1% of the detected molecular formulae and <2% of the total signal intensity of the DOM dataset. These were phosphorus- and nitrogen-containing compounds and they were partially also detected in DOM samples from other studies that included high virus abundances. While some of these formulae matched with typical biomolecules that are constituents of viruses, others matched with bacterial cell wall components. Thus, the identified DOM molecular formulae were probably not solely derived from virus particles but were partially also derived from processes such as the virus-mediated bacterial cell lysis. Our results indicate that a virus-derived DOM signature is part of the natural DOM and barely detectable within the analytical window of ultrahigh-resolution mass spectrometry when a high natural background is present.

14.
Nat Ecol Evol ; 6(7): 866-877, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35501482

RESUMEN

Seagrasses are among the most efficient sinks of carbon dioxide on Earth. While carbon sequestration in terrestrial plants is linked to the microorganisms living in their soils, the interactions of seagrasses with their rhizospheres are poorly understood. Here, we show that the seagrass, Posidonia oceanica excretes sugars, mainly sucrose, into its rhizosphere. These sugars accumulate to µM concentrations-nearly 80 times higher than previously observed in marine environments. This finding is unexpected as sugars are readily consumed by microorganisms. Our experiments indicated that under low oxygen conditions, phenolic compounds from P. oceanica inhibited microbial consumption of sucrose. Analyses of the rhizosphere community revealed that many microbes had the genes for degrading sucrose but these were only expressed by a few taxa that also expressed genes for degrading phenolics. Given that we observed high sucrose concentrations underneath three other species of marine plants, we predict that the presence of plant-produced phenolics under low oxygen conditions allows the accumulation of labile molecules across aquatic rhizospheres.


Asunto(s)
Alismatales , Rizosfera , Oxígeno , Sacarosa , Azúcares
15.
Environ Sci Technol ; 56(12): 9092-9102, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35584055

RESUMEN

Natural oil seepages contribute about one-half of the annual petroleum input to marine systems. Yet, environmental implications and the persistence of water-soluble hydrocarbons from these seeps are vastly unknown. We investigated the release of oil-derived dissolved organic matter (DOM) from natural deep sea asphalt seeps using laboratory incubation experiments. Fresh asphalt samples collected at the Chapopote asphalt volcano in the Southern Gulf of Mexico were incubated aerobically in artificial seawater over 4 weeks. The compositional changes in the water-soluble fraction of asphalt-derived DOM were determined with ultrahigh-resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) and by excitation-emission matrix spectroscopy to characterize fluorescent DOM (FDOM) applying parallel factor (PARAFAC) analysis. Highly reduced aliphatic asphalt-derived DOM was readily biodegraded, while aromatic and sulfur-enriched DOM appeared to be less bioavailable and accumulated in the aqueous phase. A quantitative molecular tracer approach revealed the abundance of highly condensed aromatic molecules of thermogenic origin. Our results indicate that natural asphalt and potentially other petroleum seepages can be sources of recalcitrant dissolved organic sulfur and dissolved black carbon to the ocean.


Asunto(s)
Hidrocarburos , Petróleo , Carbono/análisis , Hidrocarburos/análisis , Océanos y Mares , Azufre , Agua
16.
Sensors (Basel) ; 22(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35408363

RESUMEN

Soil spectroscopy in the visible-to-near infrared (VNIR) and mid-infrared (MIR) is a cost-effective method to determine the soil organic carbon content (SOC) based on predictive spectral models calibrated to analytical-determined SOC reference data. The degree to which uncertainty in reference data and spectral measurements contributes to the estimated accuracy of VNIR and MIR predictions, however, is rarely addressed and remains unclear, in particular for current handheld MIR spectrometers. We thus evaluated the reproducibility of both the spectral reflectance measurements with portable VNIR and MIR spectrometers and the analytical dry combustion SOC reference method, with the aim to assess how varying spectral inputs and reference values impact the calibration and validation of predictive VNIR and MIR models. Soil reflectance spectra and SOC were measured in triplicate, the latter by different laboratories, for a set of 75 finely ground soil samples covering a wide range of parent materials and SOC contents. Predictive partial least-squares regression (PLSR) models were evaluated in a repeated, nested cross-validation approach with systematically varied spectral inputs and reference data, respectively. We found that SOC predictions from both VNIR and MIR spectra were equally highly reproducible on average and similar to the dry combustion method, but MIR spectra were more robust to calibration sample variation. The contributions of spectral variation (ΔRMSE < 0.4 g·kg−1) and reference SOC uncertainty (ΔRMSE < 0.3 g·kg−1) to spectral modeling errors were small compared to the difference between the VNIR and MIR spectral ranges (ΔRMSE ~1.4 g·kg−1 in favor of MIR). For reference SOC, uncertainty was limited to the case of biased reference data appearing in either the calibration or validation. Given better predictive accuracy, comparable spectral reproducibility and greater robustness against calibration sample selection, the portable MIR spectrometer was considered overall superior to the VNIR instrument for SOC analysis. Our results further indicate that random errors in SOC reference values are effectively compensated for during model calibration, while biased SOC calibration data propagates errors into model predictions. Reference data uncertainty is thus more likely to negatively impact the estimated validation accuracy in soil spectroscopy studies where archived data, e.g., from soil spectral libraries, are used for model building, but it should be negligible otherwise.


Asunto(s)
Carbono , Suelo , Calibración , Carbono/química , Análisis de los Mínimos Cuadrados , Reproducibilidad de los Resultados , Suelo/química
17.
Environ Sci Technol ; 56(6): 3758-3769, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35213127

RESUMEN

Most oceanic dissolved organic matter (DOM) is still not fully molecularly characterized. We combined high-field nuclear magnetic resonance (NMR) and ultrahigh-resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) for the structural and molecular formula-level characterization of solid-phase extracted (SPE) DOM from surface, mesopelagic, and bathypelagic Atlantic and Pacific Ocean samples. Using a MicroCryoProbe, unprecedented low amounts of SPE-DOM (∼1 mg carbon) were sufficient for two-dimensional NMR analysis. Low proportions of olefinic and aromatic relative to aliphatic and carboxylated structures (NMR) at the sea surface were likely related to photochemical transformations. This was consistent with lower molecular masses and higher degrees of saturation and oxygenation (FT-ICR-MS) compared to those of the deep sea. Carbohydrate structures in the mesopelagic North Pacific Ocean suggest export and release from sinking particles. In our sample set, the universal molecular DOM composition, as captured by FT-ICR-MS, appears to be structurally more diverse when analyzed by NMR, suggesting DOM variability across oceanic provinces to be more pronounced than previously assumed. As a proof of concept, our study takes advantage of new complementary approaches resolving thousands of structural and molecular DOM features while applying reasonable instrument times, allowing for the analysis of large oceanic data sets to increase our understanding of marine DOM biogeochemistry.


Asunto(s)
Materia Orgánica Disuelta , Agua , Espectrometría de Masas/métodos , Peso Molecular , Agua/química
18.
Mikrochim Acta ; 189(3): 117, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35195801

RESUMEN

Gold nanoparticle-catalyzed chemiluminescence (CL) of luminol is an attractive alternative to strategies relying on enzymes, as their aggregation leads to significantly enhanced CL signals. Consequently, analytes disturbing such aggregation will lead to an easy-to-quantify weakening of the signal. Based on this concept, a homogeneous aptamer-based assay for the detection of sulfadimethoxine (SDM) has been developed as a microfluidic CL flow-injection platform. Here, the efficient mixing of gold nanoparticles, aptamers, and analyte in short channel distances is of utmost importance, and two-dimensional (2D) and three-dimensional (3D) mixer designs made via Xurography were investigated. In the end, since 2D designs could not provide sufficient mixing, a laminated 3D 5-layer microfluidic mixer was developed and optimized with respect to mixing capability and observation by the charge-coupled device (CCD) camera. Furthermore, the performance of standard luminol and its more hydrophilic derivative m-carboxy luminol was studied identifying the hydrophilic derivative to provide tenfold more signal enhancement and reliable results. Finally, the novel detection platform was used for the specific detection of SDM via its aptamer and yielded a stunning dynamic range over 5 orders of magnitude (0.01-1000 ng/ml) and a limit of detection of 4 pg/ml. This new detection concept not only outperforms other methods for SDM detection, but can be suggested as a new flow-injection strategy for aptamer-based rapid and cost-efficient analysis in environmental monitoring and food safety.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Biosensibles/métodos , Oro , Luminiscencia , Mediciones Luminiscentes/métodos , Microfluídica , Sulfadimetoxina
19.
Anal Chem ; 94(6): 2855-2864, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35107016

RESUMEN

Lateral-flow immunoassays and laboratory diagnostic tests like enzyme-linked immunosorbent assays (ELISAs) are powerful diagnostic tools to help fight the COVID-19 pandemic using them as antigen or antibody tests. However, the need emerges for alternative bioanalytical systems that combine their favorable features─simple, rapid, and cost-efficient point-of-care (POC) analysis of lateral-flow immunoassays and higher reliability of laboratory tests─while eliminating their disadvantages (limited sensitivity and specificity of lateral-flow assays and prolonged time and work expenditure of laboratory analysis). An additional need met by only a few tests is multiplexing, allowing for the analysis of several immunorecognition patterns at the same time. We herein present a strategy to combine all desirable attributes of the different test types by means of a flow-based chemiluminescence microarray immunoassay. Laminated polycarbonate microarray chips were developed for easy production and subsequent application in the fully automated microarray analysis platform MCR-R, where a novel flow cell design minimizes the sample volume to 40 µL. This system was capable of detecting IgG antibodies to SARS-CoV-2 with 100% sensitivity and specificity using recombinant antigens for the SARS-CoV-2 spike S1 protein, nucleocapsid protein, and receptor binding domain. The analysis was accomplished within under 4 min from serum, plasma, and whole blood, making it also useful in POC settings. Additionally, we showed the possibility of serosurveillance after infection or vaccination to monitor formerly unnoticed breakthrough infections in the population as well as to detect the need for booster vaccination after the natural decline of the antibody titer below detectable levels. This will help in answering pressing questions on the importance of the antibody response to SARS-CoV-2 that so far remain open. Additionally, even the sequential detection of IgM and IgG antibodies was possible, allowing for statements on the time response of an infection. While our serodiagnostic application focuses on SARS-CoV-2, the same approach is easily adjusted to other diseases, making it a powerful tool for future serological testing.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Humanos , Inmunoensayo , Inmunoglobulina M , Luminiscencia , Análisis por Micromatrices , Pandemias , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Sci Total Environ ; 813: 151889, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34826491

RESUMEN

Mangroves under macro-tidal regimes are global carbon sequestration hotspots but the microbial drivers of biogeochemical cycles remain poorly understood. Here, we investigate the drivers of mangrove microbial community composition across a porewater-creek-estuary-ocean continuum. Observations were performed on the Amazon region in one of the largest mangrove systems worldwide with effective sequestration of organic carbon buried in soils and dissolved carbon via outwelling to the ocean. The potential export to the adjacent oceanic region ranged from 57 to 380 kg of dissolved and particulate organic carbon per second (up to 33 thousand tons C per day). Macro tides modulated microbial communities and their metabolic processes, e.g., anoxygenic phototrophy, sulfur, and nitrogen cycling. Respiration, sulfur metabolism and dissolved organic carbon (DOC) levels were linked to functional groups and microbial cell counts. Total microbial counts decreased and cyanobacteria counts peaked in the spring tide. The microbial groups driving carbon, nitrogen, sulfur and methane cycles were consistent across all spatial scales. Taxonomic groups engaged in sulfur cycling (Allochromatium, Desulfovibrio, and Thibacillus) within mangroves were abundant at all scales. Tidally-driven porewater exchange within mangroves drove a progressive increase of sulfur cycle taxonomic groups and their functional genes both temporally (tidal cycles) and spatially (from mangrove porewater to continental shelf). Overall, we revealed a unified and consistent response of microbiomes at different spatial and temporal scales to tidally-driven mangrove porewater exchange.


Asunto(s)
Microbiota , Carbono , Estuarios , Nitrógeno , Azufre , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...